Interference



Air Wedge




8.22 TESTING THE PLANENESS OF SURFACES

If the two surfaces OA and OB are perfectly plane, the air-film gradu-
ally varies in thickness from O to A. The fringes are of equal thickngév‘, *
because. each fringe is the locus of the points at which the thickness of
the film has a constant value (Fig. 8.23). L
This is an important application of the phe-  FRINGES OF EQUAL
nomenon of interference. If the fringes are THICKNESS
not of equal thickness it means the surfaces
are not plane. The standard method 1s to
take an optically plane surface OA and the
surface to be tested OB. The fringes are ob-
served in the field of view and if they are
of equal thickness the surface OB is plane,
If not, the surface OB is not plane. The sur- s
face OB is polished and the process is repeated. When the fringes ob
are of equal width, it means that the surface OB is plane, A



Newton’s Rings

G ///////////////// Glass plate

Fig. (i)



Circular interference fringes can be produced by enclosing a
very thin film of air or any other transparent medium of varying
thickness between a plane glass plate and a convex lens of a large
radius of curvature. Such fringes were first obtained by Newton and
are known as Newton’s rings.

When a plane-convex lens of long focal length is placed on a
plane glass plate, a thin film of air is enclosed between the lower
surface of the lens and the upper surface of the plate. The
thickness of the air film is very small at the point of contact and
gradually increases from the centre outwards. The fringes produced
with monochromatic light are circular. The fringes are concentric
circles, uniform in thickness and with the point of contact as the
centre. When viewed with white light, the fringes are coloured.
With monochromatic light, bright and dark circular fringes are
produced in the air film.

S is a source of monochromatic light as shown in Fig.-(i). A
horizontal beam of light falls on the glass plate B at 45°. The glass
plate B reflects a part of the incident light towards the air film
enclosed by the lens L and the plane glass plate G. The reflected
beam from the air film is viewed with a microscope, Interference
takes place and dark and bright circular fringes are produced. This
is due to the interference between the light reflected from the
lower surface of the lens and the upper surface of the glass plate G.



Theory:
(i) Newton’s rings by reflected light:

Reflected light

Air film

Fig. (ii) Fig. (iii)



Suppose the radius of curvature of the lens is R and the
air film is of thickness t at a distance of OQ =r from the point of

contact O. Here, interference is due to reflected light.
Therefore, for the bright rings

choso=(2n-l)%
where n=1, 2 3, .. etc.
Here, 0 is small, therefore
cos 9 =1
For air, =1
A
2=02n-1) E'
For the dark rings
2)f cos 0 = nA
or 2t = nA

where n=012 3, ... etc

(i)

..l

(i)



In Fig (i), EPx HE = OE x (2R — OF)

But EP=HE=r, OE=PQ=t
and 2R -t=2R (Approximately)
?=2R-t
2
or = -2'3-
Substituting the value of ¢ in equations (ii) and (iii).
_ {2n-1)
- JETE ]
For dark rings
= nAR

r=nAR



when 1 = 0, the radius of the dark ring is zero and the radius of the bright ring is J-XZE
Therefore, the centre is dark. Altemately, dark and bright rings are produced.
Result: The radius of the dark ring is proportional to

(i) Jn, (if) Yk and (iii) VR.

Similarly the radius of the bright ring is proportional to

0 J2=Y, iy and iy IR
lfDuthedimeteroithedarkrh\g

D=2r=2 /nkR
For the central dark ring

n=0

D=2 fnhR =0

This corresponds to the centre of the Newton's rings.
While counting the order of the dark rings 1, 2, 3 etc, the central ring is not counted.



Therefore for the first dark ring

=1

D,=2JAR

For the second dark ring

n=2
D2= 2m

and for the ™ dark ring

D, = 2JukR

Take the case of 16" and 9™ rings

The dif

Dy, = 24/16AR =8AR
D, = 249AR = 6AR

ference in diameters between the 16th and the 9th rings,

Dys-Dy = 8YAR-64AR = 2/AR



Similarly the difference in the diameters between the fourth and first rings,

D4-Dl = 2@-2\/&:2\/&
Therefore, the fringe width decreases with the order of the fringe and the fringes get closer
with increase in their order
For bright rings,
) (1=1)AR
2
2(2n=1)AR
2
-1
o [
In above equation, substituting n =1, 2, 3 (number of the ring) the radii of the first, second,
third etc,, bright rings can be obtained directly

DZ-




(ii) Newton’s rings by transmitted light:

Transmitted light

Ithe case oftransmitted ligh, the inteference finges are produced such that for bright ings
it cos = ik



and for dark rings

2ut cos @ =(2n-1) %—
Here, for air p =1, and cos 8 =1
For bright rings 2t =nA

and for dark rings 2=(2n-1) %.



2
Taking the value of = ;—R, where r is the radius of the ring and R the radius of curvature

of the lower surtace of the lens, the tadius for the bright and dark rings can be caloulated.
For bright rings, ~ 1*= nAR

n=1)AR
.

Fordark fings, 7'

wheren=123 .. et

When 1 = 0, for bright rings r =

Thetetore, in the case of Newton's rings due to transmitted light, the central ring i bright
16, Just opposite to the ring pattem due to reflected light



Newtons 7ings in reflected Uight

Newtons rings ia tzanseeitted lig™



8.29 HAIDINGER’S FRINGES

In the relation 2 ufcosr = nA, if ¢ is large, a very small change
in r will change the path difference by one wavelength. In this case the
ray must pass through a plate as a parallel beam and must be received
by the eye or the telescope N
focussed for infinity. The in- | TELESCOPE
terference patterns are known ' '
as fringes of equal inclination.
These are different from New-
ton’s rings. These fringes of
equal inclination were first
observed by Haidinger and af- A
terwards studied by Lummer
and Mascart. From an ex-
tended source S, light rays fall
on the plate. The rays striking ue ‘ |
at the same angle and refracted at the same angle form a parallel beam
and are viewed through the telescope focussed for infinity (Fig. 8.35). The
pattern is a series of concentric circles whose centre is the principal focus
of the objective of the. telescope.




8.41 BREWSTER’S FRINGES

When a beam of monochromatic light falls in succession on two
thick plates of transparent material, it is divided into several portions by
reflection at various surfaces.
Some of the reflected rays ! 3 4
produce interference and in- f Y
terference fringes are ob-
served. Such fringes were first ' -
observed by Brewster in 1815 J
and are known as Brewster’s |
fringes. Y vy ¥

Consider two thick V '
plates A and B of thickness ¢ W P T g
PR H
and refractive index p. Sup- - 7
pose, the two plates are par- ! Y _ Y Y
allel and several paths are
traversed by a ray of light Fig. 8.46

S

=
~—tf—e
>




Fi, 840). The pat taversed by 2 and 3 e equal and if the plts
i Sughtly inclmed,  small ath ifference beoween 2 and 3 is introduced
“d nterrencs frngs ae observed, Smlarly pahs ravered by 4 and
) ar e, It ples A and B ave ighty inline o sl pth i

erene 15 inoduce and intrfrence finges are ofserved, Thes fnnges
e known 2 Brewstr's fnges

MONTE VAN W TNTNIL L AN A e e G s ¢



832 MICHELSON INTERFEROMETER

Michelson interferometer consists of two highly polished mirrors M B
and M, and two plane glass plates A and C parallel to each other: The
rear Slde of the glass plate A is half silvered so that light coming from
the source S is equally reflected and transmitted by it. Light from a mono-
chromatic source .S after passing through the lens Z, falls on the plate-A.
The lens Z. makes the beam. parallel. The plate A is inclined at an angle
of 45°. One half of the energy of the incident beam is reflected by the
plate A towards the mirror A7, and the other half is transmitted towards
the mirror A4, These two beam:: (reflected and transmitted) travel along
two mutually perpendxcular paths and are reflected back: by the mirror Ady
and AM,. These two beams return to the plate A. The beam reflected back
by A4, 1s transmitted through the glass plate A and the beam reflected back
by M is reflected by the glass plate A towards the eye (Fig. B. 37). The
beam going towards the mirror AZ, and reflected back, has to pass twice
through the glass plate A. "I'herefore, to compensate for the path, the plate
C is used between the mirror A7, and A. The light beam going towards:
the mirror A7, and reflected back towards A also passes twice through the
compensation plate C. Therefore, the paths of the two rays in glass are
the same. The mirror M, is fixed on a carriage’ and can be moved with
the help of the handle H The distance through which the mirror A4, is




moved can be read on the scale.’ The planes of the "‘mirfors *M and MM,
can ‘be made perfectly perpendicular with the help of the.fine serews at—
tached to them. The compensating plate is a necessity for white: light
fringes but can be dispensed with, while using monochromatic light.

If the mirrors. M and A7, are perfectly perpendicular, the observer’s
eye will see 1h‘e\|mages of the mirrors A, and AZ, through A. There will
be an air film between the two images and the d1§tancd <an be wvaried
with the help of the handle &. The fringes will be perfectly circular. If
the path travelled by the two rays is exactly the same, the field of view
'wul be completely dark!: If the two images of M, and A, are- inclined (the
mirrors AZ, and- M, not perfectly perpendicular) the-enclosed’ air-Film will
be wedge sh’tped and straight line fringes will be observed. When the mir-
ror M is moved away or towards the glass plate A with the help of the
handle £, the fringes cross the centre of the field of view of the Observer’s
eye. If M is moved through a distance A2, one fringée will cross the field
of- view and will move to the position prev:ously occup:ed by the next

fringe. Pt
833 TYPES OF FRINGES » ‘

(i) Circular frimges. Circular fnnges are produced with monochro-
matic. light in a Michelson- interferometer. Heére, the mirror A, and the. vir-

tual mirror AZ,” which is the image of MM, - =3
must be parallel (Flg. 8.38). : _2d~{ 1 o s
The source is an extend one and S, and o . 25

S, are the virtual images of the source due SN
to A4, and A7 If the distance My M.’ is d. N\

' L Vo8
the dlstance between S, and Sz = 2. The \\‘
path difference between the two - beams will S ' L ST
be 24 cos ©O. Therefore, the f-ays for which %

2d cos © = nA will reinforce to produce max-
ima. These circular fringes which are due to
interference - with a phase dlfference deter-
mined. by the --1nrr'hnat10n 0 are NOMWIN - as
fringes of. equal 1nchnat1.on or Hanchnger s
fringes. When M, and AZ1,)” coincide; the path

difference is zera and the field of view is per-

fectly dark [Fig. 8.39 (&H)]. -
When M, is nearer the eye than M the Fig. 8. 38.

fringes are as shown in Fig. 8.39 Ca). thn M 7 is farther from the eyve .

than A7, ., the fringes are as shown in Fig. 8. 39 (a~)y




(i) Localized fringes. When the mirror A7, and the wvirtual mirror
Mz’ Cimage of AZ,) are inclined, the air filmm enclosed is wedge- shaped

and straight line fringes are rnnind. 4

observed. The shape of the
Ab) (<)

fringes observed fonr various
values of the path differ-
ence are shown in Fig: 8.40.
The fringes are perfectly
straight when DM, actually -
inu:rsq_c)ts M, in the middle - -
[Fig. 8.40 (i)]. In the &ther g /

positions, the shape of the fringes is.as shown in Fig. 8.40 (i) and (iii)-
They are curved and are always convex towards the thin edge of the
wedge. This type of fringes éire; not obsérved for large path differences.

i s

r

Fig. 8.39
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Fig. 8.40

Ciii) White ljght fringes.With white light, the fringes are observed
only when the path difference is small. The different colours: overlap on
one another and o*‘xly the first few coloured fringes are visible. "The central
fringe is dark and the other fringes are cgoloured. After about 10 fringes
a number of colours overlap at a point. White light fringes are useful

for the determination of zero path difference, especially in the stand-
ardisation of the metre: " - - y

8.34 VISIBILITY OF FRINGES

In the case of Michelson interferometer. thé intensity is given by
’ . IS I vt AR TES »

I = A&a® cos? [—g— )

2'513(2dcose)

e 1<

Here S =

d is the distance between Af, and M,". The intensity is maximum when
8 is an integral multiple of 2. The intensity is zero when & is an odd



multiple of t. When a monochromatic source of light is used, the minimum
intensity of the fringes is zero. The visibility of fringes in the case of a
Michelson interferometer is

Vv Imax 5 Imin
%9 Imat mirn

For monochromatic light,
I =0

V=1

However, if the source of light is not strictly monochromatic, but
contains two nearby wavelengths, the condition for maximum intensity for
both the wavelengths is satisfied only for particular values of path dif-
ference (24 cos 0).

As the value of d is altered, the two wavelengths do coincide over
a considerable range and here the fringe visibility is maximum. For values
of d other than maximum intensity positions for both the wavelengths, the
two fringe patterns will be complimentary, provided the intensities for both .
the wavelengths are equal. If intensities are not equal, the minimum visi- -
bility will not be zero. The minimum visibility will be

3. o
e

Vnu'n r a2 = az
i 2

Here a, and a, are the amplitudes.

Hence the source will be perfectly monochromatic if visibility is maxi-
mum and constant for different values of 2d cos 6. If the visibility changes
with the change of 2d cos 6, the source is not strictly. monochromatic.

3

| | e e ——— o — - T



8.35. APPLICATIONS OF MICHELSON
INTERFEROMETER

Michelson interferometer can be used to determine (i) the wavelength'
of a given monochromatic source of light, (é) the difference between the two
neighbouring wavelengths or resolution of the spectral lines, (i) refractive
index and thickness of various thin transparent materials and (#v) for the meas- *
urement of the standard metre in terms of the wavelength of light.

8.36. DETERMINATION OF THE WAVELENGTH
. OF MONOCHROMATIC LIGHT :

The mirrors M, and M, are adjusted so that circular fringes are visible.
in the field of view (Fig. 8.39). If M, and M, are equidistant from the
glass plate A, the field of view will be perfectly dark. The mirror M, 1s

kept fjxed and the mirror M, is moved with the help of the handle of
tl?e mucrometer screw and the number of fringes that cross the field of
View s counted. Suppose for the monochromatic light of wavélength A

the distance through which the mirror is moved = 4 and the number (51;

na

fringes that cross the centre of the field of view = niThen, d = ——, be-
b 2 b

cause for one fringe shift, the mirror moves through a distance equal to
half the wavelength. Hence A can be determined.

Temeaaanl . © 4 [



8-37 DETERMINATION OF THE DIFFERENCE IN

" WAVELENGTH BETWEEN TWO NEIGHBOURING
SPECTRAL LINES (RESOLUTION OF THE
SPECTRAL LINES) u

There are two spectral lines D, and D, of sodium light. They are
Very near to each other and the difference in their wavelengths is small.
Suppose, the wavelength of D, line is ).] and the wavelength of D, lipe

is A,. Also A # A,. Each spectral line will give rise to its fringes in a

Michelson interferometer: By adjusting the position of the mirror M, of
the Michelson interferometer, the position is found when the fringes are
very bright. In this position, the bright fringes due to D, coincides with
the bright fringes due to D,. When the mirror M, is moved, the two sets
of fringes get out of step because their wavelengths are different. When
the mirror M, is moved through a certain distance, the bright fringes due
o one set will be seen in this case. Again by moving the mirror M, a

position is reached when a bright fringe of one set falls on the bright fringe



of ‘t\_pc other and the fringes are again distinct. This is possible when the
n thhorder of the longer wavelength coincides with the (7 + 1) th order
of the shorter wavelength.

Let n, and n, be the changes in the order at the centre of the field
of view, when the mirror A is displaced through a distance < between
two consecutive positions of maximum distinctness of the fringes.
2d = n A, = A,

- -

If A, is greater than A

n, = 7, + 1
2d = mA, = (r,+ 1A, veaC)
nA = @+ 1A, :
SRR A el Y
c 2y == A,
Substituting the value of rn, I ()
A A,
= i iy
2d = y =,
2"xa"z :
or 7\.1 - 2&; S > - (ZE).

Taking A as the mean of A, and A,
A’Z
E AN = A, — A, = 5. ---(ifd)
Hence the difference in wavelength A, — A, camn be calculated. In ac-
tual practice, readings for ten successive positions of mmascinmum distinctness
are taken and the mean value of Jd is calculated. :
Also, wave number

s AR _ o R
v—-xlandvz—’.z

1

’ F:om_ equation (D,
' A A

AT A= frainko



. o

hoAo U

y 4 N0 .
0t V=V, = i i)

This equation represents the difference in the wave number of the
two spectral Imes.



838 DETERMINATION OF REFRACTIVE INDEX OF

THIN TRANSPARENT PLATES ‘
When a thin transparent material (mica or cellophane) is introduced .
in the path of the beam going towards M, , a path difference 2(nL— 1) ¢ is
introduced between the two interfering beams. With monochromatic light,
this path difference introduces a displacement in the fringe system. Sup-
pose N fringes have crossed the centre of the field of view. But experi-
mentally it is not possible to count this number N.

1

Fig. 8.41

The following method is used to count the number of fringes that
cross the field of view. :



.‘(‘l) The given transparent plate is introduced in the path of the beam

going towards AZ,. The centre of the field of view is observed.

(2) The plate is slowly rotated and the number of fringes that cross

the field of view is counted. Suppose for an angle of rotation <, the number
of fringes that cross the field of view is 7.

In Fig. 8.41, the plate of thickness 7, and refractive index M has been

rotated through an angle ¢. The optical path for ABC is ur+ BC and for‘
ADFE it is PMWAD ++ DFE.

The increase in opuca.l path for = fringes that cross the field view

is glven by

2L MAD + DFE —pur — BC] = nA v )
, z J e %
Here LA = cos ' * DE = DC sin ¢
DC = FC — FD = ttan ¢ — ¢ tan ¢7
z
BC == cos & —2z
Substituting these wvalues in equation (i)
A < e S o ¥ A AR > ) _ nA 7w
cos & “+ z sin ¢ (tand tan d’) pLE t( cos & 1 ) > --.(ZE)
sin
e 1* sin ¢”
Simplifying equation (i)
L z : - b 1 ae 47 S,
cos¢,+snn¢(ta.n¢ - tan ) pEpE g >z 1 4+
LL sin? ¢  sin ¢ sin $” 1 oo HRAG
cos ¢” *cos &P cos ¢° cos ¢ 2z R
L __sin® ¢ sin® ¢ 1 B . .
cos ¢ ucos¢'+cos¢ cos ¢ = 2z TR
1 P e L % 1 By M 7
But K cos ¢ = V? — sin® P
' rna

e (OYPE — sin® $¢)—cosd = S -E—1+n

_ (22— nA) (1 —cos b) + (22A%/ 4r)
S . 22(1 —cos ) —nA ---(EZE)




/

Hence |L can be determined from relation (iii). The term n*A? / 4t can
be neglected as it very small. 4

8.39 DETERMINATION OF THE REFRACTIVE INDEX
OF GASES

When a tube containing a gas is introduced in the path of the beam
going towards M|, a path difference = 2 (L~ 1) is introduced between
the two 1nterfer1ng beams. Here, U is the refractive index of the gas and
| is the length of the tube. If n fringes cross the centre of the field of
view, 2(t—1)! = nh . Knowing [, n and A, can be calculated. If
i, n and A are known, !/ can be calculated.

"~ In the path of the rays going towards M, , a tube containing air at
atmospheric pressure is introduced and the fringes are obtained in the cen-
tre of the field of view. In that case, refractive index of air at various
pressures can be determined. Let the length of the tube be / and let it
contain air at atmospheric pressure. The tube is completely evacuated and
n fringes cross the centre of the field of view. The path difference intro-
duced between the two interfering beams

=2(u-1)1
2(u—11 = nA
nA

or ;l_‘—-27+1



84€ FABRY-PEROT INTERFEROMETER

A Fabry- Perot interferometer consists of two plane parallel glass
plates A and B. With this interferometer fringes of constant inclination are \

obtained by transmitted light after muitiple reflection between the glass
plates (Fig. 8.50)

A ]
S T r :
i %h\!\N
1 ¢ )
~] | ¢
s !
1 g

Fig. 8.50

The inside surfaces of the two plates are silvered. Here the multiple
reflections take place in the air film between the plates A and B. In Fig. 8.50
a ray of light from a point § on an extended source; after multiple reflection
is brought to focus at the point P by the lens L. The condition for maximum
intensity by transmitted light in a piane parallel air film is given by

2urcosh = nh
For an air film =1
5 2tcos d = nh i)

where n = 0, 1, 2, 3....efc.

The interference pattern consists of concentric rings with O as centre,
Each ring corresponds to a particular value of 6. The radius of the ring
is OP. Fringes of constant inclination are called Haidinger Fringes.

In this interferometer, the two plates are invariably kept parallel.
One of the plates is fixed and the other plate is moved with a rack and
pinion arrangement. If the distance ¢ between the two plates is decreased,
the value of ¢ decreases for a given value of A and n. It means with
decrease in !, the rings shrink and disappear at the centre. Whenever ¢

is decreased by %, one ring disappears at the centre. Also the order of
the rings decreases from centre outwards. The ring pattern of a Fabry-

Perot interferometer is extremely sharp in comparison to the ring pattern ‘

obtained with a Michelson interferometer. Hence Fabry-Perot interferome-
ter is very useful for resolving very small wavelength differences. The
fringes may be obtained with plate separation up to 10 cm.

Interferometers based on multiple reflections will give fringes which
are very sharp in comparison to those obtained with two coherent sources.
In a Fabry-Perot interferometer, the sharpness of the fringes depends upon
the reflection coefficient of the silvered surfaces. Suppose, the transmxfted
amplitudes are C, CP, Cr, Cr"..etc. Here r is the reflection qoe_fﬁcnenl
andCistheproductoftheorigmalanplimdeamllhemmnussnonco-
efficient at the two plates.

Y
0 ¢ X
Fig. 8.51
The transmitted beams have a constant phase difference 8 where
4t
= A cos §

Applying the law ‘of polygon of vectors (Fig. 8.51), the intensity /
is proportional to the square of the resultant amplitude.
I°=(C+Cr’cosG+Cr‘cos28+...)’+(Cr’sin8+Cr’sin28+...)2

lee CP[(14Pcosd+r*cos28+.. )

+(Psind+Asin28+... )] .G
This can be evaluated as follows :
Mathematically,

1
1+Pe®+ PP+ 5B+, .. -
Here i=V¥-1
Multiply the numerator and denominator of the RH.S. by

1-re® ¥
e .
o ’+'2d‘+l‘¢‘”+l‘¢m+... =l—_?!(;‘:%:§*n . (iif)



Also e*® — cos S+ isin S
Substituting its value in equation ()
1 +r2(coss+isi-n8)+r'(cos 28 + i sin 28) + . . .
X 1 — 72 (cos & — i sin &)
o l—-r2[cos§+zs:ns+c058-—a.-.~.1n8]+r”

Separating the real and imaginary term,
(1 4+22cosS+r*cos 28 +...)4i[r*sind + »* sin 28 + . _ =3
1 —r?cos & +ir?sin S A
---LZV)

1 — 2,7 cos o 4+ 27

Equating the real and imaginary terms 1

1 —~ cos S :

(1 +r"cosS+r"cos 2858 +...) = i 552 s e ee(v)
~ . 72 sin S E.

(P sin&4+sin28 +...) = f o S T —3 ...(vz).

AS s, ~2 A |

. == 1
i i (Ed)

Substituting the wvalues in equations (v) and (vi) in eqgquation
I oc 2 (1 — 2 cos 8)? + (2 sin 5)2
(1 — 2,7 cos &+ r*)2

1 — 2,7 cos S + 4
s Ca[(l —Zﬁpos.8+'r‘)2]

f o< ( 2 ;
1 — 2,2 cos & 4+ »°*
[ @
(1 —ﬁ)2+4r2§in2(§)
S D))
(1—!‘2)2-+4'rasin2(§-) ‘

d = k

Special Cases :

(1) When 0O, 2, 47T . . .eto.

NIO o

= 0, 71, 27T . . .etc. and sinz = .0



In this case, the denominator in eguation (vii) will have minimum
value. Hence the intensity of the fringes will be maximum

.(viin)

Cf?.
I'"“x_k[(l—rz)z}
(2) When O =T, 3T S & . €Sy
8§ =® 3r 5m (0 _
2—2,2,2,and sm[z)—l

In this case, the denominator in equation (vii) has a maximum value.
Hence, intensity of the fringes will be minimum

L foc €
min (1=-r)*+ 412

c? :
o a+ 2y ..(ix)




8.560 INTERFERENCE FILTER

An 1interference filter is based on the principle of Fabry-Perot inter-
ferometer. It consists of an optical system that will transmit nearly a mono-
chromatic beam of light (covering a small range of 50 A).

SILVER
FILMS GLASS
TRANSPARENT
DISELECTRIC
GLASS
Fig. 8.56

An interference filter consists of a thin transparent dielectric e.g.
magnesium fluoride. There are two glass plates on whose surfaces semi

transparent silver films are deposited by evaporation method. The dielectric
is placed between the two glass plates (Fig. 8.56).



When a beam of light is incident normally on the filter, multiple re-
flections take place within the film. The interference maxima for the trans-
mitted beam will be governed by

2ut = nA

Here p is th refractive index of the dielectric and f is its thickness,
and n is a whole number. If pr = A, n will be equal to 2. For the value
of n = 1, the maximum occurs for a wavelength of 2A. HereA and 2\ rep-
resent a wide separation in the visible region.

In the case of an interference filter, when the thickness of the di-
electric is reduced, the transmitted wavelengths are more widely spaced.
For an optical thickness (ur) of the dielectric film of 5000 A, the trans- -
mitted wavelengths for n = 1, 2, 3 etc. are 10,000 A, 5000 A, 3333 A.
These three wavelengths are widely spaced. Only 5000 A is in the visible
region. If there are two maxima in the visible region one of them can
be eliminated by using a coloured glass filter. This may be the protecting
glass of the dielectric itself. '

Interference filters are better as compared to the coloured glass filters
because in the case of interference filters light is not absorbed and hence
there is no overheating. Interference filters are used in spectroscopic work
for studying the spectra in a narrow range of wavelengths. ~



Vs

8.5 STATIONARY WAVES IN LIGHT

Similar to stationary waves in sound, due to interference of incident
and reflected sound waves in strings and air columns, stationary waves
are produced in light. This gives another evidence of the wave nature of-
light. This phenomenon has been used in colour photography. when a light
wave is travelling in the direction of the x axis and is reflected by a denser
medium, a phase change of 7 occurs between the incident and the reflected
light. For the incident wave,

Yy =a sin 27 [-Yt:—% ) , (D)

For the reflected wave

et L 6 i
y, = —asin ZR(T"-?&.J ..(1f)
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The resultant displacement y is given by
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Here 2a sin SR represents the amplitude of the resultant wave.

For x = 0O, —723 G I = & 222"-. the alpplitude is zero. These are the po-
sitions of nodes.
For x = %. §%, —%%'— gy e C _; 5 B ., the amplitude is maximurm.

These are the positions of antinodes. These waves showing alternate for-
mation of nodes and antinodes due to the interference of the incident and
the reflected waves are called stationary waves in light.

Wiener Experiment. Wiener in 1890 demonstrated the stationary
waves formed due to interference of the incident and the reflected light.

In his experiment, Wieners took a highly polished mirror as a re-

flecting surface. An extremely thin film of photographic emulsion was in-
clined at a small angle to the

REFLECTING
reflecting surface (Fig. B8.57). & o SURFACE
When the filmm was exposed to TR S T e
light and developed, the film was s : 1

found to be crossed by a series of
Mark lines at the positions shown in
| 8.57. These are the positons
the antinodal planes. However,
blackening was observed at the
octind planes. This experiment
shows clearly the formation of sta- .
Honary waves of light due to inter- =
o e of the incident and
light. In his experiment,
ner also showed that it is the :
virie vector (F) perpendicular to ; Fig. 8.57
. ane of incidence that is responsible for the production of these waves.
sver, the light must be plane polarized.
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i
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a, a — ANTINODAL PLANES
b, b —NODAL PLANES 3
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u‘éing the pho-

In 1932, Fry and Ives repeated Wiener’s experiment
in place of

toelectric effect in a thin metal film on a wedge of qyé‘tz
the photographic emulsion. Vs
p
LIFPFPMANNS COLOUR PHOTOGCGRAPHY
Lippmann in 1881 made use of the pPhenomenon of stationary waves
in light in colour Photogzraphy.

A photographic plate havinoe an ovieoaoalo 6©Eoa.
of the same wavelength (coherent) reflected from <

ered with mercury on
and mercury (Fig. 8.5
pPhotographic plate wi
Lot light of various w.
plate as shown in Fig
Therefore the distance
light will be less. The
distance bertween two |
Each colour forms its
such an exposed plate |
located at the antinode
layers for one particul

TVIOLET

which the'layers were formed, are in prhase with eact
reinforce ar‘m‘l\ the reflected light of that particular
tensity. Therefore a particular set of layers corres)
wavelength. The other colours reflected by thec laye
difference is not one wavelength (non cohcecrent) will |
intensity will be much less. If 72 waves of amp litude
sultant intensity is (72.4)? in the case of coherent wav
in the case of non-coherent waves. In the case of na
resultant intensity is 22A42%. To conclude, a particular sc
the path difference between reflected light is A will
ticular colour is strongly reflected by which these 1

exposed.
The colour photographs due to Lippmann px
bright. But no prints can be taken from it and the P
is tedious. .
Note. Lippmann process is not used commercial
ess is based on three colour process. The two methods

and (Zi£) subtr@ctivc.‘
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plates

MERCURY

Sameeas

Fig. B.58
illuminated with white light, each

When such a developed plate is

cular colour by which it was origi-

layer will reflect strongly only that parti
flect only a small amount of lLight.

nally formed. Here, each layer will re :
ayer, is gets reflected. All radiations

-As white light passes through each 1




of the \'Sa\me wavelength (coherent) reflected from different layers due to
which me\l\ayers were formed, are in phase with each other. Therefore they
reinforce ar’m{ the reflected light of that particular colour is of large in-
tensity. Therefore a particular set of layers corresponds to a particular
wavelength. The other colours reflected by the layers for which the path
ditference is not one wavelength (non coherent) will not reinforce and their
intensity will be much less. If n waves of amplitude A combine, their re-
sultant intensity is (nA)? in the case of coherent waves but it is much less
in the case of non-coherent waves. In the case of non-coherent waves the
resultant intensity is nA% To conclude, a particular set of layers for which
the path difference between reflected light is A will reinforce and that par-
ticular colour is strongly reflected by which these layers were originally
exposed.

The colour photographs due to Lippmann process are extremely
bright. But no prints can be taken from it and the process to prepare the
plates is tedious. '

Note. Lippmann process is not used commercially. The modern proc-
ess is based on three colour process. The two methods used are (i) additive
and (if) subtractive.
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In the case of ordinary photographs, it is possible only to_x{b(ain the
view in a particular plane. The camera lens can be focusse;d only in a
particular plane and the details of the field nearer and farther than the
focussed plane will not be recorded. All the other planes are out of focus.
The main reason for this is that the photograph records only the intensity
distribution in a particular plane.

If, on the other hand, it is possible to record the amplitude and the
phase distribution in any plane between the object and the observer, it
helps to obtain the complete field of view as originally observed.

This type of recording is done in holography and holographic studies
make it possible to have complete study of >
the field of view at any other time. '

Gaabor (1948) has introduced for the
first time the holographic method of record-
ing and retrieving the image.

S is a point source of light and O is
a small object. On XY, the secondary wav-
elets from  superimpose on the strong pri-
mary waves from S. As the primary wave N i
is wuniform and more intense than the sec- Fig: 859
ondary wave, the variation in intensity across XY is dependent on
ation in phase across it. It is not determined by the variation in intensity
across the secondary wave. In other words, the presence of strong coherent
background helps to record information about the phase of the diffracted
light. This technique was first introduced by Zernike. The pattern obtained
on XY is called a hologram and its photograph is taken, keeping
of exposure extremely small.

For reconstructing the field of view, the photographic plate is de-
veloped by reversal and if this developed plate is inserted at the place
XY and only a source S is used, on looking through this plate towards

S, the object will appear at the point O. In this way the original field of
view is observed.

the vari-

the time

Holography has been used in holographic interferometry. Holography is
also useful in the microscopic examination of certain kinds of specimens. If
one desires to make a prolonged examination of a small specimen suspended
in a medium, it is necessary to focus the microscope off and on due to the
change of position of the specimen. This difficulty can be overcome by taking
a short exposure holograph of the specimen. The reconstructed holographic
image can be examined continuously by focussing the microscope.

Holography is also useful to provide a high capacity system for im-
age storage and reexamination.
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10.1 INTRODUCTION

Experiments on interference and diffraction have shown that light is
a form of wave motion. These effects do not tell us about the type of
wave motion i.e., whether the light waves are longitudinal or transverse,
or whether the vibrations are linear, circular or torsional. The phenomenon
of polarization has helped 1o establish beyond doubt that light waves are
transverse \waves.

10.2 POLARIZATION OF TRANSVERSE WAVES

}.et a rope AB be passed through two parallel slits 5§ and §,. The
rope is attached to a fixed point at B [Fig. 10.1(a)). Hold the end A and

Fig. 10.1

move the rope up and down perpendicular to AB. A wave emerges along
CD and it is due to transverse vibrations parallel to the slit §. The slit
§, allows the wave to pass through it when it is parallel to §,. It is observed
that the slit S, does not allow the wave 1o pass through it when it is at
right angles to the slit §, [Fig. 10.1(h)].
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If the end A is moved in a circular manner. the rope will show cir-.
cular motion up to the slit §. Beyond S, it will show only linear vibrations
parallel to the slit S, because the slit §, will stop the other components.
If S, and S, are at right angles to each other the rope will not show any
vibration beyond §..

If longitudinal waves are set up by moving the rope forward and
backward along the string, the waves will pass through S, and §, irrespec-
tive of their position.

POLARIZED POLARIZED
LIGHT LIGHT

I 2 2
UlHl*

SOURCE
(i}

B

A
POLARIZED
LIGHT
o el f: 54 £
R
2 A

Fig. 102

A similar phenomenon has been observed in light when it passes
through a tourmaline crystal.

Let light from a source S°fall on a tourmaline crystal A which is
cut parallel 10 its axis (Fig. 10.2). The crystal A will act as the slit 5.
The light is slightly coloured due to the natural colour of the crystal. On
rotating the crystal A, no remarkable change is noticed. Now place the
crystal B parallel to A

(1) Rotate both the crystals together so that their axes are always par-
allel. No change is observed in the light coming out of B [Fig. 10.2 (1))

/(2) Keep the crystal A fixed and rotate the crystal B. The light trans-
mitted through B becomes dimmer and dimmer. When B is ar right angles
to A, no light emerges out of B [Fig. 102 (i)]. :

If the crystal B is further rotated, the intensity of light coming out
of it gradually increases and is maximum again when the two crystals are
parallel.

This experiment shows conclusively that light is not propagated
as longitudinal or compressional waves, If we consider the propagaton
of light as a longitudinal wave motion then no extinction of light should
occur when the crystal B is rotated.
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It is clear that after passing through the crystal A, the light waves
vibrate only in one direction. Therefore light coming out of the crystal
A is said to be polarized because it has acquired the property of one
sidedness with regard to the direction of the rays.

This experiment proves that light waves are transverse waves, oth-
erwise light coming out of B could never be extinguished by simply ro-
tating the crystal B.

10.3 PLANE OF POLARIZATION

When ordinary light is passed through a tourmaline crystal, the light
is polarized and vibrations are confined to only one direction perpendicular
to the direction of propagation of light. This is plane polarized light and

PLANE OF VIBRATION

Fig. 10.3

it has acquired the property of one sidedness. The plane of polarization
is that plane in which no vibrations occur. The plane ABCD in Fig. 10.3
is the plane of polarization. The vibrations occur at right angles to the
plane of polarization and the plane in which vibrations odcur is known
as plane’ of vibration. The plane EFGH in Fig. 103 is the plane of vi-
bration.

Ordinary light from a source has very large number of wavelengths.
Moreover, the vibrations may be linear,
circular or elliptical. From our idea of
wave motion, circular or elliptical vi-
brations consist of two linear vibrations
at right angles to each other and having

a phase difference of 12!-

Therefore any vibration can be
resolved into two component vibrations at
right angles to each other. As light waves
are transverse waves the vibrations can
be resolved into two planes xx’ and )y’
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at right angles to each other and also perpendicular to the direction
of propagation of light (Fig. 10.4).

In Fig. 10.5(i), the vibrations of the particles are represented parallel
(arrow heads) and perpendicular to the plane of the paper (dots).

(IR e Bl e A Sl Sy AL
7% 3 & i g P
S 0 I 3 S B RS
T TR R T TR
(i)

Fig. 103

In Fig. (10.3) (ii) the vibrations are shown only parallel to the plane of
the paper. In Fig. (10.5) (iii) the vibrations are represented only perpen-
dicular to the plane of the paper.

10.4 POLARIZATION BY REFLECTION

Polarization of light by reflection from the surface of glass was dis-
covered by Malus in 1808. He found that polarized light is obtained when
ordinary light is reflected by a plane sheet of glass. Consider the light
incident along the path AB on the glass surface {Fig. 10.6). Light is

I
TOURMALINE
CRYSTAL

Fig. 10.6

reflected along BC. In the path of BC, place a tourmaline crystal and rotate
it slowly. It will be observed that light is completely extinguished only
at one particular angle of incidence. This angle of incidence is equal t
57.5° for a glass surface and is known as the polarizing angle. Similarly
polarized light by reflection can be produced from water surface also.
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The production of polarized light by glass is explained as follows.
The vibrations of the incident light can be resolved into components
parallel to the glass surface and perpendicular to the glass surface. Light
due to the components parallel to the glass surface is reflected whereas
light due to the components perpendicular to the glass surface is trans-
mitted,

Thus, the light reflected by glass is plane polarized and can be
detected by a tourmaline crystal.

The polarized light has been analysed by using another mirror by
Biot.

10.5 BIOTS POLARISCOPE

It consists of two glass plates M, and M, (Fig. 10.7). The glass plates
are painted black on their back surfaces so as to avoid any reflection and
this also helps in absorbing refracted
light. A beam of unpolarized light
AB is incident at an angle of about
57.5° on the first glass surface at B
and is reflected along BC (Fig.
10.8). This light is again reflected at
575° by the second glass plate M,
placed parallel to the first. The glass
plate M, is known as the polarizer
and M, as the analyser.

When the upper plate M, is ro-
tated about BC, the intensity of the
reflected beam along CD decreases
and becomes zero for 90° rotation of
M,. Remember, the rotation of the
plate M, about BC, keeps the angle
of incidence constant and it does not
change with the rotation of M,. Thus
we find that light travelling along
BC is plane polarized.

When the mirror M, is rotated
further it is found that the intensity
of CD becomes maximum at 1807,
minimum at 270° and again maxi-
mum at 360°,

Fig. 107

The above experiment proves that when light is incident at an angle
of 57.5° on a glass surface, the reflected light consists of waves in which
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the displacements are confined to a certain direction at right angles to the
ray and we get polarized light by reflection.

Fig. 108

10.6 BREWSTER’S LAW

In 1811, Brewster performed a number of experiments to study the
polarization of light by reflection at the surfaces of different media.

He found that ordinary light is completely polarized in the plane of
incidence when it gets reflected from a transparent medium at a particular
angle known as the angle of polarization.

He was able to prove that the tangent of the angle of polarization
is numerically equal to the refractive index of the medium. Moreover, the

reflected and the refracted rays are perpendiculur 10 each other.

Suppose, unpolarized light is incident at an angle equal to the po-
larizing angle on the glass surface. Tt is reflected along BC and refracted

along BD (Fig. 10.9).
From Snell's law

L Sind D
sinr
From Brewster’s law
. sini -
M=tani=——:; ()
cos ¢

Comparing (i) and (i)

. R
COSi = sinr =cos[-2--r)
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T P T
I= s =h. W itre >

Asi+r = % £ CBD is also equal to % Therefore, the reflected and

. the refracted rays are at right angles to each other.

Fig. 10.9

From Brewster's law, it is clear that for crown glass of refractive

index 1.52, the value of ¢ is given by
i =tan"'(1.52) or i = 56.7°

However, 57° is an approximate value for the polarizing angle for
ordinary glass. For a refractive index of 1.7 the polarising angle is about
59.5° i.e., the polarizing angle is not widely different for different glasses.

As the refractive index of a substance varies with the wavelength
of the incident light, the polarizing angle will be different for light of dif-
ferent wavelengths, Therefore, polarization will be complete only for light
of a particular wavelength at a time i.e., for monochromatic light

It is clear that the light vibrating in the plane of incidence is not
reflected along BC [Fig. 10.9]. In the reflected beam the vibrations along
BC cannot be observed, whereas vibrations at right angles to the plane
of incidence can contribute for the resultant intensity. Thus, we get plane
polarized light along BC. The refracted ray will have both the vibrations
(i) in the plane of incidence and (i) at right angles to the plane of in-
cidence. But it is richer in vibrations in the plane of incidence. Hence it
is partially plane-polarized.

10.7 BREWSTER WINDOW

One of the important applications of Brewster's law and Brew-
ster's angle is in the design of a glass window that enables 100%
transmission of light. Such a type of window is used in lasers and
it is called a Brewster window.
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When an ordinary beam of light is incident normally on a glass win-
dow, about 8% of light is lost by reflection on its two surfawc.and a.ibout
929 intensity is transmitted. In the case of a gas laser filled with mirrors
outside the windows, light travels through the window about a hundred
times. In this way the intensity of the final beam is about
3 % 10~ because (0.92)'® = 3x10~% It means the transmitted beam has
practically no intensity.

To overcome this difficulty, the window is tilted so that the light
beam is incident at Brewster's angle. After about hundred transmissions,
the final beam will be plane polarized.

ZERO
" ZERO
4 ’

Fig. 10.10

The light component vibrating at right angles to the plane of inci-
dence is reflected. After about 100 reflections at the Brewster window, the
transmitted beam will have 50% of the intensity of the incident beam and
it will be completely plane polarized. The net effect of this type of ar-
rangement is that half the amount of light intensity has been discarded
the other half is completely retained. Brewster's windows are used

It is found that at a single glass surface or any similar transparent
sedium, only a small fraction of the incident light is reflected.
For glass ( = 1.5) at the polarizing angle, 100% of the light
ing parallel o the plane of incidence is transmitted whc_was for the
sendicular vibrations only 85% is transmitted and 15% is mﬂcclo@.
srefore, if we use a pile of plates and the beam of ordinary ligl}l Is
dent at the polarizing angle on the pile of plates, some of the vibrations
ular to the plane of incidence are reflected by the first plate and
ekt are transmitted through it. When this beam of light is reflected
\¢ second plate, again some of the vibrations perpendicular to the
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Intensity of the ordinary ray

I, = A’sin’ @
i = Alcos’ 6 _ cos’@
I, A'sin’® ~ sin’®
Here 6 = 30
/
. 8
E= I 3

10.10 DOUBLE REFRACTION

Erasmus Bartholinus discovered, in 1669, that when a ray of light
is refracted by a crystal of calcite it gives two refracted rays. This
phenomenon is calied double refraction. Calcite or Iceland spar is crys-
tallised calcium carbonate (Ca CO,) and was found in large quantities in
Iceland as very large transparent crystals. Due to this reason calcite is also
known as Iceland spar. It crystallises in many forms and can be reduced
by cleavage or breakage into a rhombohedron, bounded by six paral-
lelograms with angles equal to 102° and 78° (more accurately 101° 557
and 78°5%).

Optic Axis. At two opposite cor-
ners A and H, of the rhombohedron all ' c B
the angles of the faces are obtuse [Fig.
10.13 (a)]. These corners A and H are
known as the blunt comers of the crys-
tal. A line drawn through A making
equal angles with each of the three
edges gives the direction of the optic
axis. In fact any line parallel to this line
is also an optic axis. Therefore, optic
axis is not a line but it is a direction,
Moreover, it is not defined by joining
the two blunt corners. Only in a special
case, when the three edges of the crys-
tal are equal, the line joining the two
blunt corners A and H coincides with
the crystallographic axis of the crystal
and it gives the direction of the optic
axis [Fig. 10.13 (b)). If a ray of light
15 incident along the optic axis or in a
direction parallel to the optic axis, then

Fig. 10.13
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it wi it i henomenon of double refrac-
it will not split into two rays. Thus, the p
tlonlsabsentwhenlightlsnllowedwenwthecryshldongtheopdc

axis. : x
The phenomenon of double refraction can be shown with the help
of the following experiment : £
i i ite’ crystal over
Mark an ink dot on a piece of paper. Place a calci
this dot on the paper. Two images will be observed. Now rotate the crystal

[J
“ E c
) (i)
Fig. 10.14

slowly as shown in Fig. 10.14 (). Pla.oe your eye vat:]c‘:ﬂy above th:
crystal. It is found that one image remains stationary and seoond. kno:!:gas
rotates with the rotation of the crystal 'l‘he. stationary image is -
the ordinary image while the second one is known as the extraordinary
image. .

i When a ray of light AB is incident on the calcite crystalv 5 :akmga:ln
angle of incidence = i, it is refracted a}ong two pmhs msndem;mng,
() along BC making an angle of refraction = r, and (i) alongDo e
an angle of refraction = r,. These two rays emerge out along

which are parallel [Fig. 10.14 (i)].

/)

: _ sini .
The ordinary ray has a refractive index W, = sinr, and the extraor

o _ sini . ks
dinary ray has a refractive index p = ey = It is found that the ary
i i ive index is constant. In
obeys the laws of refraction and its thra_cnve inde '
:ahi cas:y of the extraordinary ray, its refractive index varies with the angle
of incidence and it is not fixed. ¢
In the case of calcite p, > W, because r, is less than r, [Fig. 10.1

({0)). Therefore the velocity of light for lhe o:dlmry ray inside the crys-
tal will be less compared to the velocity of light ﬁxtheuuaordmarymmem.
ray. In calcite, the extraordinary ray travels faster as m“i:ddii’fuw %
dinary ray. Moreover, the velocity of the uuamﬁnuy ray b 2
different directions because its refractive index varies with angle

Incidence.
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It has been found that both the rays are plane polarized. The
vibrations of the ordinary ray are perpendicular to the principal section
of the crystal while the vibrations of the extraordinary ray are in the plane
of the principal section of the crystal. Thus, the two rays are plane
polarised, their vibrations being at right angles (o each other.

Special Cases. (1) It should be remembered that a ray of light is
not split up into ordinary and extraordinary components when it is incident
on calcite parallel to its optic axis. In this case, the ordinary and the
extraordinary rays travel along the same direction with the same velocity.

(2) When a ray of light is incident perpendicular to the optic axis
on the calorie crystal, the ray of light is not split up into ordinary and
extraordinary components, It means that the ordinary and the extraordinary
rays travel in the same direction but with different velocities.

10.11 PRINCIPAL SECTION OF THE CRYSTAL

A plane which contains the optic axis and is perpendicular to the
opposite faces of the crystal is called the principal section of the crystal.
As a crystal has six faces, therefore, for every point there are three prin-
cipal sections. A principal section always cuts the surface of a calcite crys-
tal in a parallelogram with angles 109° and 71°

10.12 PRINCIPAL PLANE

A plane in the crystal drawn through the optic axis and the ordinary
ray is defined as the principal plane of the ordinary ray, Similarly, a plane
in the crystal drawn through the optic axis and the extraordinary ray is
defined as the principal plane of the extraordinary ray. In general, the two
planes do not coincide. In a particular case, when the plane of incidence
is a principal section then the principal section of the crystal and the
principal planes of the ordinary and the extraordinary rays coincide.
10.13 NICOL PRISM .

It is an optical device used for producing and analysing plane po-
larized light. It was invented by William Nicol, in 1828, who was an expert
in cutting and polishing gems and crystals- We have discussed that when
a beam of light is transmitted through a calcite crystal, it breaks up into
two rays : (1) the ordinary ray which has its vibrations perpendicular to
the principal section of the crystal and (2) the extraordinary ray which
has its vibrations parallel to the principal section.

The nicol prism is made in such a way that it eliminates one of
the two rays by total internal reflection. It is generally found that the or-
dinary ray is eliminated and only the extraordinary ray is transmitted
through the prism. .
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A calcite crystal whose length is three times its breadth is taken, Let
A’BCDEFG'H represent such a crystal having
A’ and G’ as its blunt corners and A'CG'E is
one of the principal sections  with
ZA'CG =10

The faces A’BCDand EFG'H are
ground in such a way that the angle ACG be—
comes = 68° instead of 71°. The crystal is
then cut along the plane AKGL as shown in
Fig. 10.15. The two cut surfaces are grounded
and polished optically flat and then ccmeu!zd
together by Canada balsam whose. mfrawve

index lies between the refractive indices for
the ordinary and the extraordinary rays for
calcite.

‘Refraaive index for the ordinary

W= 1.658

Refractive index for Canada baisam
B, = 1.55

Fig. 10.15

Refractive index for the extraordinary K. = 1.486

ORDINARY

Fig. 10.16

L In Fig. 10.16, the section ACGE of the crystal is shown, The diagomll;l
A€ represents the Canada balsam layer in the plane ALGK of Fig. 10.15.

It is clear that Canada balsam acts as a rarer mefiium for an ordin:rr:'
“pay ond it acts as a denser medium for the extraordinary ray. Therefore,

i medium. When the

ada balsam it passes from a denser IP a rarer \
canof incidence iz? greater than the critical angle, ttte ray is totally
ly reflected and is not transmitted. The extraordinary ray is not
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affected and is therefore transmitted through the prism. The working of
the prism is clear from the following cases :- f

(1) Refractive index for ordinary ray with respect to Canada balsam

1658
=K = 1550
sin@ = & = 1550
p 1658

0= 69

If the angle of incidence for the ordinary ray is more than the critical
angle, it is totally internally reflected and only the extraordinary ray passes
through the nicol prism. Therefore, a ray of unpolarized light on passing
through the nicol prism in this position becomes plane-polarized,

(2) If the angle of incidence is less than the critical angle for the
ordinary ray, it is not reflected and is transmitted through the prism. In
this position both the ordinary and the extraordinary rays are transmitted
through the prism.

(3) The extraordinary ray also has a limit beyond which it is totally
internally reflected by the Canada balsam surface. The refractive index for
the extraordinary ray = 1486 when the extraordinary ray is travelling at
right angles to the direction of the optic axis. If the extraordinary ray trav-
els along the optic axis, its refractive index is the same as that of the
ordinary ray and it is equal to 1.658. Therefore, depending upon the di-
rection of propagation of the extraordinary ray M, lies between 1.486 and
1.658. Therefore for a particular case H, may be more than 1.55 and the
angle of incidence will be more than the critical angle. Then, the extraor-
dinary ray will also be totally internally reflected at the Canada balsam
layer. The sides of the nicol prism are coated with black paint to absorb
the ordinary rays that are reflected towards the sides by the Canada balsam
layer.

10.14 NICOL PRISM AS AN ANALYSER -

Nicol prism can be used for the production and detection of plane
polarizer light.

When two nicol prisms P, and P, are placed adjacent to each other
as shown in Fig. 10.17 (i), one of them acts as a polarizer and the other
acts as an analyser. Fig. 10.17 (i) shows the position of two parallel nicols
and only the extraordinary ray passes through both the prisms.

If the second prism P, is gradually rotated, the intensity of the
extraordinary ray decreases in accordance with Malus Law and when
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the two prisms are crossed [i.e., when they are at right angles to each
other, Fig. 10,16 (if), then no light comes out of the second prism P. It
means that light coming out of P is plane polarized. When the po-
larized extraordinary ray enters the prism P, in this positions it acts as

POLARIZER Pi ANALYSER P2

0

(U]

Py P2
E \
)
o
i
Fig. 10.17

an ordinary ray and is totally internally reflected by the Canada balsam
layer and so no light comes out of P,. Therefore, the prism P, produces
plane-polarized- light and the prism P, detects it.

Hence P and P, are called the polarizer and the analyser respec-
tively. The combination of P and P, is called a polariscope.

10.15 HUYGENS EXPLANATION OF DOUBLE .
REFRACTION IN UNIAXIAL CRYSTALS

Huygens explained the phenomenon of double refraction with the
help of his principle of secondary wavelets. A point source of light i a
double refracting medium is the origin of two wavefronts. For the ordinary
ray, for which the velocity of light is the same in all directions the wave-
front is spherical. For the extraordinary ray, the velocity varies with the
direction and the wavefront is an ellipsoid of revolution. The velocities
of the ordinary and the extraordinary rays are the same along the
optic axis,

Consider a point source of light § in a calcite crystal [Fig. 10.18.(a)].

- The sphere is the wave surface for the ordinary ray and the ellipsoid is

the wave surface for the extraordinary ray. The ordinary wave surface lies
Within the extraordinary wave surface. Such crystals are known as nega-
crystals. For crystals like quartz, which are known as positive crystals,
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the extraordinary wave surface lies within the ordinary wave surflaﬁ:e

[Fig. 10.18 (b)), /

NAGATIVE | POSITIVE |
CRYSTAL | CRYSTAL |
(CALCITE) | (QUARTZ) |

WD @
~ :
OPTICI oPTIC/1
AXIS ¥ AXiS ¥
(a) ®

Fig. 10.18

(1) For the negative uniaxial crystals, i, > M. The velocity of the
extraordinary ray varies as the radius vector of the ellipsoid. It is least
and equal to the velocity of the ordinary ray along the optic aXis but it
is maximum at right angles to the direction of the optic axis.

(2) For the positive uniaxial crystals L. > W, The velocity of the
extraordinary ray is least in a direction at right angles to the optic axis.
It is maximum and is equal to the velocity of the ordinary ray along the
optic axis. Hence, from Huygens' theory, the wavefronts or surfaces in
uniaxial crystals are a sphere and an ellipsoid and there are two points
where these two wavefronts touch each other. The direction of the line
joining these two points (Where the sphere and the ellipsoid touch each
other) is the optic axis.

10.16 OPTIC AXIS IN THE PLANE OF INCIDENCE AND
INCLINED TO THE CRYSTAL SURFACE

(a) Oblique incidence. AB is the incident plane wavefront of the
rays falling obliquely on the surface MN of the negative crystal. The crys-
tal is cut so that the optic axis is in the plane of incidence and is in the
direction shown in Fig. 10.19. O, is the spherical secondary wavefront for
the ordinary ray and E, is the ellipsoidal secondary wavefront for the ex-
traordinary ray. CP is the tangent meeting the spherical wavefront at P
and CQ is the tangent meeting the ellipsoidal wavefront at Q.

According to Huygens' construction, by the time the incident wave

reaches from B to C, the ordinary ray travels the distance AP and the
extraordinary ray travels the distance AQ. Suppose, the velocity of light
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in &ir is V_ and the velocities of light for the ordinary ray along AP and

the é;.itraordinary ray along AQ are V, and V, respectively. In this case,

AIR
M
N
CRYSTAL
5 S\ OPTIC AXIS
/ \J
/ =T
E
Fig. 10.19
BC _ Ap'nAQ
V. = Vo - V’ (i)
Therefore ap= 2% _ BC i
V. m L)
nnd AQ - -BC'_.‘,_'. - ig os
V. m L)

Here, p, and p_are the refractive indices for the ordinary and the

extraordinary rays along AP and AQ respectivel

: y. In Fig. 10.19, CP and
cQ are the ordinary and the extraordinary refracted plane wavefronts re-
specuvel.y in the crystal. Therefore, the ordinary and the extraordinary rays
travel with different velocities along different direction. Here, the semi-

major axis of the ellipsoid is % and the semi-minor axis is £C where

M, is the principal refractive index for the extraordinary ray and
B <K <K

Note.The direction AE' of the extraordinary ray is not perpendicular to the

m CO . : 5 : A
ot Cg. whereas the direction AQ of the ordinary ray is perpendicular to the
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index is maximum. Therefore, the principal refractive index for the
positive uniaxial crystal is the ratio of the velocity of light in vacuum
to the minimum velocity of the extraordinary ray.

For a4 negative crystal of calate, b = 1.658 and B, = 1.486. There-
fore, the ratio of the major to the mnor axis of the wave surface of the
extraordinary ray is 1.658 : 1.486.

For a positive crystal of quartz. B, = 1.544 and p, = 1.553. There-
fore, the ratio of the major to the minor axis of the wave surface of the
extraordinary ray is, 1.553 : 1.544.

1021 EXPERIMENTAL DETERMINATION OF
REFRACTIVE INDEX
For determining the refractive index for the extraordinary ray a
calcite crystal is cut in the form of & prism with the optic axis per-
pendicular to the refracting edge of the prism and perpendicular o the
base BC [Fig. 1027 (@)l It can also be'cut with the optic axis parallel
to the

‘
.

7l

Fig. 1027 (a) Optic axis per perpendicular 1o the refracting edge.
(b) Optic axis parallel to the refracting edge.

refracting edge of the prism [Fig. 1027 (). The prism i§ plawq on the
spectrometer table and is adjusted for the minimum deviation position for
the extraordinary rays. The angle of minimum deviation §_ is determined

and the principal refractive index for the extraordinary ray is cakulated

from the relation,
A+d,
sin 3

A
2

For a given wavelength, the ordinary and the extraordinary rays are
separated while passing through the prism, Therefore, the angle of
minimum deviation for the ordinary ray can be measured and thus its re-
fractive index can be calculated.

Om

(a)

'J!:

sin
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1022 POUBLE IMAGE POLARIZING PRISMS v

Nicol prism cannot be used with ultravioket light on account of the
Canada babam laver which absorbs these rays. Sometimes, it is also de-
sirable to have both the ordinary and the extraordinary rays widely sepa-
rated. For this purpose two prisms viz. (i) Rochon prism and (i) Wollaston
prism are used.

(1) Rochon Prism. It consists of two prisms ABC and BCD (of
quartz or calcite) cut with their optic axes as shown in Fig. 10.28. The
prism ABC is cut such that the optic axis is parallel to the face AB and
the incident light. The prism BCD has the opticaxis perpendicular to the
plane of incidence. Light incident normally on the face AC of the prism
passes undeviated up to the boundary BC. In the prism BCD, the ordmary
ray passes undeviated. If the prisms are made of quartz, the extraordinary
ray is deviated as shown in Fig. 10.28, In the case of calcite, the extraor-
dinary will be deviated to the other side. The prisms ABC and BCD are
cemented together by glycerine or castor oil. Here, the ordinary emergent
beam is achromatic whereas the extraordinary beam is chromatic.

Fig. 1028

(2) Wollaston prism: It consists of two prisms ABC and BCD of
quartz or calcite cut with their optic axes as shown in Fig. 10.29. They
are cemented together by glycenne or caster oil.

A ray of light is incident normally on the face AC of the prism ABC.
The ordinary and the extraordinary rays travel along the same direction
but with different speeds. After passing BC the ordinary ray behaves as
the extra ordinary and the extra ordinary behaves as the ordinary while
passing through the prism BCD. One ray is bent towards the normal while
the other is bent away from the normal. In quartz p. > . Therefore, the
ordinary ray while passing the boundary BC is refracted towards the nor-
mal as an extraordinary ray while the extraordinary ray is refracted away
from the normal as an ordinary ray as shown in Fig. 10.29. If the prisms
are made from calcite, the directions of the ordinary and the extraordinary
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rays are interchanged. While coming out of the face BD of the prism, the

ordinary and the extraordinary

A

il

c D

Polarization

rays are diverged, The prism

0

I
I

7

Fig. 1029

is useful in determining the percentage of polarization in a partially
polarized beam. Double image prisms are used in spectrophotometers and

pYyIometers.

~10.23 ELLIPTICALLY AND CIRCULARLY POLARISED

LIGHT
Let monochromatic light

be incident on the nicol prism N, [Fig.

1030 (a)). After passing through the micol prism N, itis plane-polarized
and is incident normally on a uniaxial doubly refracting crystal P (calcite
or quartz) whose faces have been cut parallel o the optic axis. The vi-

brations

(a)

v
PLANE Pg’.:nTmzeo o
L
*1  oreTIC
P AXIS ~

\y/
i

Fg. 1030

of the plane-polarized light incident on the crystal are shown in Fig. 10.30
(b). The plane polarized light on entering the crystal is split up into two
components, ordinary and extraordinary. Both the rays, in this case, travel
along the same direction but, with different velocities. When the rays have
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travelled through the thickness d in the crystal, a phase difference 8 is
introduced between them,

Theory. Suppose the amplitude of the incident plane polarized light
on the crystal is A and it makes an
angle 6 with the oplic axis (Fig.
10.31). Therefore, the amplitude of the o 8
ordinary ray vibrating along PO is
A sin 0 and the amplitode of the ex-
traordinary ray vibrating along PE is A
A cos 8. Since a phase difference 8 is
introduced between the two rays, after

passing thorough & thickness d of the . >
crystal, the rays after comming out of P E
the crystal can be represented in (erms Fig. 1031
of two simple harmomc motions, at 3
right angles to each other and having a phase difference.
For the extraordinary ray,
x = Acos 8. sin(@1+3)
For the ordinary ray,
y = Asinf.smmr
Take, AcosB =a
and AsnB = b
x = asin(wr+3d) ON
y = bsnot i)
From (ii)
e st
5 s
|
y
and woLo! = 1_7
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Squaring and rearranging

T L
b R A SR . %
-;2'+?,—,-— - cosd = sin" o i)

This is the general equation of an ellipse.
Special Cases, (1) When & = 0sind = 0 and cosd = 1’
From equation (iii)

2.7 8
ad ¥ ab
v 2
" At 0
4 s
or v=b—x
- a

This is the equation of & straight line. Therefore, the emergent light
will be plane polarized (Fig. 10.32).

(2) When 8 = 5, ‘cos8 = 0,sind =1

From equation (i)
B i
it
This represents the equation of a symmetrical ellipse. The emergent
light in this case will be elliptically polarized provided a # b.

$=0 d=m/4 8=n/2 5=3x/4 $=x
LA b )
8=2n 5=7n/4 8-3::12' ‘6=Snl4
Fig. 1032

(3) When & = 12‘- and a=0b
From equation (i),
24y =a
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This represents the equation of circle of radius a. The emergent light
will be circularly polarized. Here the vibrations of the incident-planc-
polarized light on the crystal make an angle of 45° with the direction of
the opc axis.

(4) For & = 1/4 or 7n/4, the shape of the ellipse will be as shown
in Fig. 10.32.

(5) For all other values of 8, the natre of vibrations will be as shown
mn Fig. 10.32.

1024 QUARTER WAVE PLATE

It is a plate of doubly refracting uniaxial crystal of calcite or quartz
of suitable thickness whose refracting faces are cut parallel to the direction
of the optic axis. The incident plane-polarized light is perpendicular to its
surface and the ordinary and the extraordinary rays travel along the same
direction with different velocities. If the thickness of the plate is ¢ and
the refractive. indices for the ordinary and the extraordmary rays are
1, and y, respectively, then the path difference introduced between the two

rays is given by !
For negative crystals, path difference = (p,—H, )1
For positive crystals, path difference = (p,—W, )¢

Fig. 1033

To produce a path difference of ?41 in calate

(-)e =
‘——.—_L————
CA(, 1)

or

D)
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and in the case of quartz,
cnba K o
A0p—1,)
If the plane-polarized light, whose plane of vibration is inclined at
an angle of 45° to the optic axis, is incident on a quarter wave plate, the
cmergent light is circularly polarized (Fig. 10.33).
1025 HALF WAVE PLATE )
This plate is also made from a doubly refracting uniaxial crystal of
quartz or calcite with its refracting faces cut parallel 0 the optic axis. The
thickness of the plate is such that the ordinary and the extraordinary rays

have a path difference = % after passing through the crystal.

For negative crystals, path difference = (1~ )1/
For positive crystals, path difference = (p -1 )¢

t i)

To produce a path difference of % in calcite,

or = ()]
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and in the case of quartz,

SRR
2(p—1y)

When plane-polarized light is incident on & half-wave plate such that

t .(if)

it makes an angle of 45° with the optic axis, a path difference of % is

introduced between the extraordinary and the ordinary rays. The emergent
light is plane-polarized and the direction of polarization of the linear in-
cident light is rotated through 90° as shown in Fig. 1031. Thus, a half
wave plate rotates the azimuth of a beam of plane polarized light by
0(r, provided the incident light makds an angle of 45” with the optic axis
of the half wave plate.

Example 102. Calculate the thickness of a half wave plate of
quartz for a wavelength of 5000 A, Here p, = 1.553 and p, = 1.544.

(Delhi)
For a half wave plate,
A Yo
2Th -1, ]
Here Ao=S5000A =5x10"*cm
B, = 1.553, n, = 1544, 1 = 7
o 5x10°°
~ 2[1.553- 1.544)
or = 278%x10"cm

Example 10.3. Plane-polarized light passes through a quartz plate
with its optic axis parallel to the faces. Calculate the least thickness of
the plate for which the emergent beam will be plane-polarized.

Given

W, = 1.5533, p, = 1.5442 and A=5x10"cm (Punjab)

ol o o
2(H—Hy)

I 5x10°°
T 2(1.5533-1.5442

= 2.75%10 " ecm




Table 10.1

Incident Light

Polarization

Incident on a rotating nicol prism

{

Intensity changes Intensity does not
and vanishes change

Result :

Plane polarised Either circularly
polanized or
unpolarized

Original

beam

Incident on a quarter
wave plate and analysed
by a rotating nicol priam

| 3

Intensity changes Intensity does not
and vanishes vanish -

Result-Circularly
polarized

Result-Unpolarised

A

Intensity changes
but never completely
extinguished

Either elliptically
polarized or a
mixture of plane
polarized and
unpolanized light

Intensity changes
and vanishes
Result - Elliprically palarised

v

~

Original beam incident

on a quarter wave plate
and analysed by a rotating
& nicol prism.
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(3) Elliptically polarized light. The beam is allowed o fall on a
nicol prism. If the beam is elliptically polarised, the miensity varies from
4 maximum to 4 minimum value when the nicol prism is rowted, The
maximum or minimum intensity depends on the condition whether the
principal plane of the nicol prism is parallel to the major axis or (o the
minor axis of the ellipse. This is just sunilar to the case when a beam
consisting of a mixture of unpolarized light and polarized light is allowed
to pass through a rotatng nicol prism.

To distinguish between the two, the original beam is allowed to fall
on a quarter wave plate and then on a nicol prism. If the beam is ellip-
tically polarized, the ordinary and the extaordinary rays will undergo a

further path difference of % The beam after passing through the quarter

wave plae becomes plane polarized and is completely extinguished twice
in each rotation of the nicol prism. Therefore, the original beam is ellip-
tically polarized. On the other hand, when the original beam after passing
through the nicol prism is not completely extinguished when studied by
a rotating nicol’ prism, the original beam is a mixture of plane polarized
and unpolarized light.

Example 10.12. Elliptically polarized' light falls on a quarter wave
plate normally. Explain the nature of the emergent light if the major axis
makes the following angles with the principal plane of the quarter wave
plate : (i) zero degree (ii) 30°. [Bombay]

(1) When elliptically polarized light passes through a quarter wave
plate and the major axis makes an angle cqual to zero degree with the
principal plane, the beam will become plane polarized.

(2) In this case, the beam remams elliptically polarised with different
intensity.

10.28 BABINET'S COMPENSATOR v

A quarter wave plate or a half wave plate produces only a fixed path
difference between the ordinary and the extraordinary rays and can be used
only for light of a particular wavelength. For different wavelengths, dit-
ferent quarter wave plates are 1o be used. To avoid this difficolty, Babinet
designed a compensator by means of which a desired path difference can
be mtroduced.

It consists of two wedge-shaped sections A and B of quartz
(Fig. 10.36). The optic axis is lengthwise in A and transverse in B, The
outer faces of the compensator are parallel to the optic axis. Therefore,
the ordinary and the extraordinary rays travel with different  ve-
locities along the same direction inside the compensator, Moreover, the
extraordinary ray in A behaves as ordinary in B while the ordinary in A
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behaves as extraordinary in B. Suppose a plane polarized parallel beam
of light is incident normally at the point C of the Babinet's compensator,
The beam is split up into extraordinary and ordinary rays. The path dif-
ference introduced between them af-
ter they have travelled a distance CD
in A is (Mg=n)t. In B, the ex-
traordinary ray behaves as ordinary
and vice versa, Therefore, the path
difference introduced by B s

1, = p)r,.
Therefore, the resultant path
difference

= (= 1) (6, 1)

The crystals A and B are
mounted such that A is fixed and B
can slide along the surface of A
with the help of a rack and pinion
arangement. In this way (1, —1,) can

be made to have any desired value.
Hence any path difference can be in-
troduced with the help of the Babinet’s compensator and it can be used
for light of any wavelength.

10.29 DICHROISM

There are certain crystals and minerals which are doubly refracting
and have the property of absorbing the ordinary and the extraordinary rays
unequally. In this way, plane polarized light is produced. The crystals
showing this property are said to be dichroic and the phenomenon is
known as dichroism. Tourmaline is a dichroic crystal and absorbs the or-
dinary ray completely as shown in Fig. 10.37. The ordinary ray is com-
pletely absorbed while the extraordinary ray is partly absorbed and so it
emerges.

Herapath (English), in 1852, discovered a synthetic crystalline ma-
terial iodo-sulphate of quinine known as herapathite which is a dichroic
crystal. It transmits linerarly polarized light of all colours and wavelengths.
But these crystals are not stable and are affected by slight strain, In 1934,
Land developed a polarizer known as a polaroid in the form of large
sheets,

Herapathite crystals are embedded in a volatile viscous medium and
the crystals are aligned with their optic axes parallel. They are prevented

Fig. 1036

3
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from shattering. There are a number of methods of pvep:m::fi 'polin:z
sheets. In one process, the dichroic crystals are embedded a‘ arlra g e
with their optic axes parallel in cellulose acetate. A more recter:t y;l):r *
prepared by taking a sheet of polyvinyl alc.ohol and subjecting it ‘o a aid
strain. In this way, the molecules are oriented parallel to the strain

Ll

N%&;’ZED
: LIGHT

ORDINARY RAY
COMPLETELY ABSORBED

Fig, 10.37

the material becomes doubly refracting. It acts as a dichroic crystal w:u:n
strained with iodine. The polaroid sheets are Placcd between glass
plates so that they are not spoiled. When the two pieces of polaroids are

(a) o)

Fig. 10.38. Polaroids

uncrossed, the emergent beam is plane polan'.acd', Fig. 19.38 (). “;)’h}e; (‘tr:;:
two polaroids are crossed, there is perfect extinction of light, Fig. .l 4 ;

Uses of Polaroids. Polaroids are widely used as polarizing sun
glasses. Polaroid films are used (o produce thfee-d:ﬂleﬂSl_onal movmg
pictures. They are used to eliminate the head light glare- in motor cars.
They are also used to improve the colour contrasts in old oil paintings
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and as glass windows in trains and aeroplanes. In aeroplanes, one of the
polaroids is fixed while the other can be rotated to control the amount
of light coming inside,

1030 FRESNEL’S RHOMB

Fresnel constructed a thomb of glass whose angles are 54° and 126°
as shown in Fig. 10.38, based upon the fact that a phase difference of
3 i introduced between the
component  vibrations (parallel
and perpendicular to the plane of
incidence) when light is totally
internally reflected back at glass-
air interface when the angle of
incidence is 54°.

A ray of light enters nor-
mally at one end of the rhomb
and is totally internally reflected
at the point B along BC. The an-
gle of incidence at B is 54°,
which is more than the critical
angle of glass. Let the incident
light be plane polarized and let
the vibrations make an angle of
45° with the plane of incidence. Flg 1039
Its components (i) parallel to the
plane of incidence and (if) perpendicular to the plane of incidence are
equal. These components after reflection at the point B undergo a phase
R
4

difference of — or a path difference of l’. A further phase difference of

8

% or a path difference of % is introduced between the components when

the ray BC. is totally internally reflected back along CD. Therefore the
final emergent ray DE has two components, vibrating at right angles to

each other and they have a path difference of % Therefore, the emergent

light DE is circularly polarized. Fresnel's thomb works similar to a quarter
wave plate,

If the light entering the Fresnel's thomb is circularly polarized, a fur-
ther path difference of % is introduced between the component vibrations.
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The total path difference between the component vibrations 1s . Therefore

the emergent light is plane polarised and its vibrations make an angle of
45° with the plane of incidence. '
When an elliptically polarized light is passed through a Fresnel's
i A2,
rhomb, & further path difference of e introdluced between the component
vibrations (parallel and perpendicular to the plane of i;:cidencc). The total
path difference between the component vibrations is 2 and the emergent
light is plane polarized.
Thus, Frespel's rhomb behaves just similar fo a quarter wave plate.

A quarter wave plate is used only for light of a particular wavelength,
whereas a Fresnel's thomb can be used for light of all wavelengths.

1031 OPTICAL ACTIVITY = .
When a polarizer and an analyser are crossed, no ||gh| anrges
out of the analyser [Fig. 10.40 (#)). When a quartz plate cut with its faces

N PLANE POLARIZED N2

S AHH—

S >
POLARIZER i ANALYSER
Nj QUARTZ N2
So——> z‘ :: ,; B l\{ / e
(i)
Fig. 1040

parallel to the optic axis is introduced between N'. and N, such that light
falls normally upon the quartz plate, the light emerges out of N,
[Fig. 10.40 (i) 1. :

The quartz plate turns the plane of vib!miop. '1?1e plane polarfzed
light enters the quartz plate and its plane of vibration iS gradually rotated
as shown in Fig. 1041

The amount of rotation through which the plane of vibration is lufned
depends upon the thickness of the quartz plate and ltfe \fvavelcngth of light.
The action of turning the plane of vibration occurs inside the body of _lhc
plate and not on its surface. This phenomenon or the ?ropeny of rotmmgI
the plane of vibration by certain crystals or substances 1s known as optica
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activity and the substance is known as an optically active substance. It

In Fig. 1042, OL is the circularly polarised vector rotating in the
has been found that calcite does not produce any change in the plane of

anti-clockwise direction and OR is the circularly polarized vector rotating

vibration of the plane polarised light, Therefore, it is not optically active.

Z|0PTIC AXIS
s
7
>
______________ +—
t 4248 BBl g .\k\\\\\\\L
LI I 2 SIS 77T N RUNAN NN
bl -
rd
7
7
v

Fig. 1041

Substances like sugar crystals, sugar solution, turpentine, sodium chiorate
and cinnabar are optically active. Some of the substances rotate the plane
of vibration to the right and they are called dextro-rotatory or right
handed. Right handed rotation means that when the observer is looking
towards light travelling towards him, the plane of vibration is rotated in
a clockwise direction. The substances that rotate the plane of vibration 10

the left (anti-clockwise from the point of view of the observer) are known
as laevo-rotatory or left-handed.

It has been found that some quartz crystals are dextro-rotatory while
others are lacvorotatory. One is the mirror image of the other in their ori-
entation. The rotation of the plane of vibration in a solution depends upon
the concentration of the optically active substance in the solution. This

helps in finding the amount of cane sugar present in a sample of sugar
solution.

«~110.32 FRESNEL'S EXPLANATION OF ROTATION

A linearly polarized light can be considered as a resultant of two
circularly polarized vibrations rotating in opposite directions, with the same
angular velocity. Fresnel assumed that a plane polarized light on entering
a crystal along the optic axis is resolved into two circularly polarized
vibrations rotating in opposite directions with the same angular velocity
or frequency.

In a crystal like calcite, the two circularly polarized vibrations travel
with the same angular velocity.

in the clockwise direction. The res:mltanl
vector of OR and OL is OA. According to
Fresnel, when lineraly polariscfi ligl_n enters a
crystal of calcite along the optic ‘axis, the cir-
cularly polarized vibrations, rotating in Oppo-
site directions, have the same velocity. The
resultant vibration will be along AB. Thus,
crystals like calcite do not rotate the plane of
vibration.

In the case of quartz, the linearly polar-
ized light, on entering the crystal i§ resolved
into two circularly polarized vibrations rotat-

ing i ite directi the case of a
ing in opposite directions. }n
; " ri :ht-handed optically active crystal, the
i A gt
Fig. 10.42 clockwise rotation travels faster while in

! left-handed optically active crystal the anti-
"clockwisc rotation travels faster. : :
Considering a right-handed quantz crystal (F:g: 10.43)‘ the clock\:;:
component travels a greater angle 3 than the anuck;c::h\:nse t::)mf:c e
‘ merge out of the crystal. The resultant of these s
;':an:lwz)f is a:o:g OA’. Therefore, the resultant vibrations™ are along
A’B’. Before entering the crystal, the p.lanc of
vibration is along AB and after emerging out
of the crystal it is along A'B’. Therefore, the
plane of vibration has rotated through an angle

: The angle, through which the plane of vi-
>

bration is rotated, depends upon the thickness
of the crystal. .
Analytical Treatment for Calcite.

Circularly polarised light is the .resultant of
two rectangular components having a phase
x
>
For clockwise circular vibrations,

x, = acosw!?

difference of

xz = asm®r

Fig. 10.43
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For anti-clockwise circular vibrations,
X, =—acoswt
¥, =asinwit
Therefore, the resultant vibrations,
along the x-axis, X = Xtk =acosot-acos ot = ()

and along the y-axis, Y=y +y =asinor+asinor

= 2asinm/
Thus, the resultant vibration has an amplitude 2g and is plane po-
larized. The plane of vibration is along the onginal direction,

For Quartz. In the case of right-handed optically active quartz
crystal, the clockwise vibration travels faster. Therefore, on emerging out
of the crystal, the clockwise vibrations start from R and the anticlockwise
vibrations start from L. The phase difference between them = d.

For clockwise vibrations,
X, = acos(wr+d)
X = asin{w+38)
For anti-clockwise vibrations,

xz =-—acosmwrs

¥, = asinwt
Therefore the resultant displacements along the two axes are

X=X,+X1

1}

acos (W1+8)—acoswt

Zasinésin(o: t+§] ()

2 2
Y=y +y,

=asin(0t+d) +asinwr

2 2

The resultant vibrations along the X-axis and Y-axis have the same
phase. Therefore, the resultant vibration is plane polarized and it makes

= 2acos§sin m:+§-] ..(if)
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an angle g with the original direction. Therefore, the plane of vibration
has rotated through an angle -g— on passing through the crystal.
Dividing (1) by (i),
and o X
20X

Also taking the refractive index of clockwise vibrations = W, and
the anticlockwise vibration = M., the optical path difference in passing
through a thickness ¢ of the crystal = (1, — pg) d.

If the wavelengths of light = A,

then, phase difference o= %’:—x(pmh difference)

2r
8= T“’m"“a)d
The plane of vibration is rotated through an angle
d =
2=k
In the case of left-handed optically active crystals,
8 =
2 T3 W iid

Example 103. The rotation in the plane of polarization
(A = 5893 A) in a certain substance is 10°/cm. Caleulate the difference
between the refractive indices for right and left circularly polarized light

in the substance. (Mysore)
2n 5
Here 8= A (uR u.‘_)d
(8 A
Rl =12 )| 2=
S _ ‘10X 2r
Here = 10°/cm = 360
= X radian/ cm
" 36
A=5893x10"% cm
-3
X xBBXI107 _ g 18sx10-"

= Tt Ak ol ~yom
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1033 FRESNEL'S EXPERIMENT

Fresnel showed that linearly polarized light on emering_ an f)p(ically
active crystal is resolved into two circularly pola‘riuid vnbrauons.. He
arranged a number of negative and positive optically active quartz prisms
as shown in Fig. 10.44.

Two circularly polarized beams were observed, one mtatiqg to the
right (clockwise) and the other rotating to the left (anuclockm). “.I‘he
optic axis is parallel to the base of each prism. When plane polarized light
in incident normally on the first crystal surface (R), the two component
circular vibrations (clockwise and anticlockwise, travel along the s?mc
direction with different speeds. When the beam is incident on the sblique

L
T
R R R
< L 3 T
R
Fig. 1044

surface of the second prism (L), the beam which was faster in the first
prism becomes slower in the second prism and vice versa. Therefore, one
beam is bent away from the normal and the other is bent towards the
normal, The two beams are separated apart, while. they travel through the
prism L. Again at the boundary of the next prism (R), the.spee'ds are
interchanged and the beam that is bent towards the normal in prism L,
is now bent away from the normal, Thus the two beams are separated more
and more while passing through the arrangement. When the two beams
emerge out, they are widely apart. When these beams are lreated with a
quarter wave plate and a nicol prism, both are found to be circularly
polarized.
1034 SPECIFIC ROTATION

Liquids containing an optically active sub.sumce e.8., sugar .solution.
camphor in alcohol etc, rotate the plane of the }mearly polarized light. The
angle through which the plane polarized light is rotated depgnds upon (.l)
the thickness of the medium (2) concentration of the souution or‘ density
of the active substance in the solvent (3) wavelength of light and

" (4) temperature.
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The specific rotation is defined as the rotation produced by a dec-
imetre (10 em) long column of the liquid containing | gram of the active
substance in one cc¢ of the solution. Therefore, s

§ = 108

o ¢ -

where S:. represents the specific rotation at temperature ¢ °C for a wave-

length A 0 is the angle of rotation, ! is the length of the solution in cm
through which the plane polarized light passes and C is the concentration
of the active substance in g/cc in the solution,

The angle through which the plane of polarization is rotated by the
optically active substance is determined with the help of a polarimeter.
When this instrument is used to determine the quantity of sugar in a so-
lution, it is known as a saccharimeter.

)0.35 LAURENT’S HALF SHADE POLARIMETER

It consists of two nicol prisms N, and N,. N, is a polarizer and N,
is an analyser. Behind N, there is a half wave plate of quartz Q which
covers one half of the field of view, while the other half G is a glass

TELESCOPE

HALF SHADE
DEVICE
Va2
Fig. 1045

plate. The glass plate G absorbs the same amount of light as the quartz
platie Q. T is a hollow glass tube having a large diameter at its middle
portion. When this tube is filled with the solution containing an optically
active substance and closed at the ends by cover-slips and metal covers,
there will be no air bubbles in the path of light. The air bubbles (if any)
will appear at the upper portion of the wide bore T, of the tube.
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Light from a monochromatic source § is incident on the converging
lens L. After passing through N, the beam is plane polarized. One half
of the beam passes through the quartz :
plate Q and the other half passes through
the glass plate G. Suppose the plane of vi-
bration of the plane polarized light inci-
dent on the half shade plate is along AB
(Fig. 10.46). Here AB makes an angle 6
with Y¥’, On passing through the quartz
plate Q, the beam is split up into ordinary
and extraordinary components which
travel along the same direction but
with different speeds and on emergence a

Fig. 1046

phase difference of © qr a path difference of -;-' is introduced between them.

The vibrations of the beam emerging omt of quartz will be along CD
whereas the vibrations of the beam emerging out of the glass plate will
be along AB. If the analyser N, has its principal plane or section along
YY’ ie., along the direction which bisects the angle AOC, the amplitudes
of light incident on the analyser N, from both the halves (i.c., quartz half
and glass half) will be equal. Therefore, the field of view will be equally
bright [Fig. 10.47 (i)).
If the analyser N, is rotated to the right of YY", then the right half
- will be brighter as compared to the left half [Fig. 10.47 (ii)]. On the other
hand, if the analyser N, is rotated to the left of YY", the left half is brighter
as compared to the right half [Fig. 10.47 (ii)].
Therefore, to find the specific rotation of an optically active sub-
stance [say, sugar solution], the analyser N, is set in the position for equal
brightness of the field of

view, first without the solu-
tion in the tube T. The read-

ings of the verniers V| and V,

are noted. When a tube con-

taining the solution of known

concentration is placed, the
0 () (i)

vibrations from the quartz

Eggal.g half and the glass half are ro-
tated. In the case of sugar so-
Fig. 1047 lution, AB and CD are ro-

tated in the clockwise direction. Therefore, on the introduction of the tube
containing the sugar solution, the field of view is not equally bright. The
analyser is rotated in the clockwise direction and is brought to a position
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s0 that the whole field of view is equally bright. The new positions of
the verniers V| and V, on the circular scale are read. Thus, the angle
through which the analyser has been
rotated gives the angle through which
the plane of vibration of the incident
beam has been rotated by the sugar
solution. In the actual experiment, for
various concentrations of the sugar 9T
solution, the corresponding angles of
rotation are determined. A graph is
plotted between concentration C and

the angle of rotation €. The graph is ——
a straight line (Fig. 10.48). “
Then from the relation Fig. 10.48
106

S, = e the specific rotation of the optically active substance is
calculated.

Example 10.14. Determine the specific rotation of the given sample
of sugar solution if the plane of polarization is turned through 13.2°. The
length of the tube containing 10% sugar solution is 20 cm.

Here, 6 = 13.2°
C=10% = 0lg/cm’
{ = 20cm

o' o Jox132
» T 2001

Example 10.15. On introducing a polarimeter wbe 25 cm long and
containing sugar solution of unknown strength, it is found that the plane
of polarization is rooted through 10°. Find the strength of the sugar so-
lution in glemy. (Given that the specific rotation of sugar solution is 60°

= 66"

per decimetre per unit concentration) (Rajasthan 1966)
Here, 0 = 10°
S = 60°
I =25¢m
s < 100
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s i)
fi=5
= i i)
L=
e
Also e
e e
5w T
L kok
5w T,
Here v, =03m and v, = 0.6m
L K )
03 u n
TS )
006 u« rl
Multiplying equation (:;'ii) byl3 an;l equating with (iv),
S
u= -03m V)
Negative sign sh<_)ws that the point source is to the left of the zone
ot ;::s:itsu:::; 'l:: \‘;lg.e?’o(t‘}u and A in equation (i)
R o 1077
03 03 r
ro=274x10"'m (i)

From equation (i)

_(274x10°9 _ gysm

R 5 7

Example 9.6. A zone plate is made by arranging the radii of the

circles which define the zones such
of newton’s rings formed between a p

radius of curvature
plate.

(Delhi (Hons) 19

adii
that they are the same as the radii
lane surface and the surface having
200 cm. Find the principal focal length of the zone

Diffraction 419

For Newton’ rings,
radius of the » th ring,
ro= n AR

r, = YAR (i)
For a zone plate, the principal focal length
ry :
jl = 7.— L)
From (i) and (ii)
AR
bt
But R=20cm=2m
fi=2m

9.7 FRESNEL AND FRAUNHOFER DIFFRACTION

Diffraction phenomena can conveniently be divided into two groups
viz, (i) Fresnel diffraction phenomena and (if) Fraunhofer diffraction phe-
nomena. In the Fresnel class of diffraction, the source or the screen or
both are at finite distances from the aperture or obstacle causing diffrac-
tion. In this case, the effect at a specific point on the screen due to the
exposed incident wavefront is considered and no modification is made by
lenses and mirrors. In such a case, the phenomenon observed on the screen
Is called Fresnel diffraction pattern. In the Fraunhofer class of diffraction
phenomena, the source and the screen on which the pattern is observed
are at infinite distances from the aperture or the obstacle causing diffrac-
tion. Fraunhofer diffraction pattern can be easily observed in practice. The
Incoming light is rendered parallel with a lens and the diffracted beam
Is focussed on the screen with another lens. Observation of Fresnel dif-
fraction phenomena do not require any lenses. Theoretical treatment of
Fraunhofer diffraction phenomena is simpler. Fresnel class of diffraction
henomena are treated first in this chapter,

.i’) DIFFRACTION AT A CIRCULAR APERTURE

Let AB be a small aperture (say a pin hole) and § is a point source
| monochromatic light. XY is a screen perpendicular to the plane of the
r and P is a point on the screen: SP is perpendicular to the screen.
I5 the centre of the aperture and r is the radius of the aperture. Let
@ distance of the source from the aperture be a (SO = a) and the dis-
of the screen from the aperture be b (OP = b). P OQ, is the incident

lcal wavefront and with reference to the point P, O is the pole of
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i i ity at P, half period zones
the wavefront (Fig. 9.8). To consider the mten-s.x y A b+_2&e‘c e
can be constructed with P as centre and radii b+ 5 5 et

i the distance of P from the aperture

sed wavefront AOB. Depending on t .

‘(;:"t 50 the distance b ) the number of half peno'd zg:;:s‘hu:to::“a; ::ec'?ar:f

ik ven. If the distance a 15 § ' :

:):rufol:d zo":;yc:: m:uaed. then the intensity at P will be proportional
1o ml2 (where m is the ampli-
tude due to the first zone at
P). On the other hand, if the
whole of the wavefront is ex-
posed to the point P, the re-

m
sultant amplitude is 7' or the

intensity at P will be propor-

ml v £
tional to Ve The position Of
the screen can be altered so as

5 somm‘ Zfo? t:’, sﬁ ::: of the aperture. If only 2 zones are exposed,
ftfen::sm ampliade at P = m —m, (mipimum) and if 3 zones are ex-
posed, the amplitude = m, —m, +m, (maximum) vand so on. Thus, b); c.o:-‘
tinuously altering the value of l:;dd th:r p:::‘t‘ :"u:;:;n:fs z:l‘::rsnﬁzx pgfed
and dark depending on whether

2 .th;la consider a point P’ on the scréen XY (Fig, 9.9) Join S to
P. 'I‘h:“{ine SP’ meets the wavefront at O, O is thé pole of the wave-

front

Fig. 99

Diffraction &

with reference 1o the point P . Construct half period zones with the point
O’ as the pole of the wavefront. The upper half of the wavefront is cut
off by the obstacle. If the first two zones are cut off by the obstacle be-
tween the points O and A and if only the 3 rd, 4 th and 5 th zones are
exposed by the aperture AOB, then the intensity at P’ will be maximum,
Thus, if odd number of half period zones are exposed, point P* will be
of maximum intensity and if even number of zones are exposed, the point
P’ will be of minimum intensity. As the distance of P’ from P increases,
the intensity of maxima and minima gradually decreases, because, with
the point P’ far removed from P, the most effective central half period
zones are cut off by the obstacle between the points O and A. With the
outer zones, the obliquity increases with reference to the point P’ and
hencethe intensity of maxima and minima also will be less, If the point
" happens to be of maximum intensity, then all the points lying on a
circle of radius PP on the screen will also be of maximum intensity. Thus,
with a circular aperture, the diffraction pattern will be concentric bright
andd dark rings with the centre P bright or dark depending on the distance
b. The width of the rings continuously decreases.

9.9 MATHEMATICAL TREATMENT OF DIFFRACTION
AT A CIRCULAR APERTURE

In Fig. 9.10, § is a point source of monochromatic light, AB is the
circular aperture and P is a point
on the screen. O is the centre of
the circular aperture. The line
SOP is perpendicular to the cir-
cular aperture AB and the screen
at P, The screen is perpendicular
to the plane of ghe paper,

Let & be the path dirfer-
ence for the waves reaching P
along the paths AP and SOP.

§0=a; OP=b; OA=r
8 = SA+AP -50P

= @+7) 4+ (b+7)"~(a+b)

1”7 "
» a[”ﬁ] +b(l+{—1} ~(a+b)

-
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r £
=a[1+za,]+b(l+2b,]-(a+b)
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Let r be the radius of the i
aperture. The path difference bet
secondary waves from A and B and reaching P’ can be given l:;een e

8 = BP'~AP’

5-1(1 1]
=2late

=Vt (x+rf VB +(x—r)
Ll 2 . ; ( )
;+E=? A1) =b[l+%):}—b(l+x2yz]

= g_’_r')l (X—):
b+ % -b- sz'

If the position of the screen is such that n full number of half period
zones can be constructed on the aperture, then the path difference

- A - 1
8= 2 or 28 = nh ='2‘5[(X+I‘)2-(x—r)1]

i & _ idrx
) % (4xr) = e (@)
"
A.
2
(2 n means even number of i zones).

Substituting this value of 28 in (i)
il n_l. WiF)

s
P will be of maximum or minimum intensity depending
at infinite distance (for an

The point P* will be dark if the path difference § = 2

The point
on whether n is odd or even, If the source is

incident plane wavefront), then a = e and o 2rx, '
1. % & % (i) 2 2
~ o nbh
"= o (i)

If n is odd, P will be a bright point. The idea of focus at /* does.
not mean that if is always a bright point.
9,10 INTENSITY AT A POINT AWAY FROM THE

CENTRE
In Fig. 9.11, AB is a circular aperture and P and P’ are two poin

¢ x_gives the radius of the n th dark ring.

Similarly, if 5 < Qnt 1k
2

@r+p _ _ 2m,

on the screen. PP’ = x and OP = b. OP is perpendicular to the scree =,
b
X

! i (2n + 1)bA

Fe | 2 TR i)
;'z A, gives the radius of the n th bright ring.
P}_ The objective of a telescope consists of an achromatic convex lens
ular aperture is ﬁx.ed in front of the lens. Let the diameter of
i 'r: be D (= 2r).. Wh:l; viewing distant objects, the incident wave-
':, n(c’ar and the d{ffractfon pattern consists of a bright centre sur-
Ak y dark a.nd bright rings of gradually decreasing intensity. The
g s . the dark rings is given by ;

x = MoA _ nb
Nt (2 D V)
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zones are more oblique with reference 10 tpc poinl_ P Thus (at P) the cen-
tre of the geometrical shadow will be bright as if the disc were a:sen;.
The diffraction pattern consists of a cent.ral l?nght spot surrounded by al-
ternate bright and dark rings as shown in Fig. 9.12 (b).

912 DIFFRACTION PATTERN DUE TO A STRAIGHT

e § monochromatic light
L § be narrow slit illuminated by a source Ol

of we::rilengm % The length of the slit is perpendicular to thc plamauc;tl’
the paper. AD is the straight edge anfi the length of the e-dcii nf p:rfr e
to the length of the slit (Fig. 9.13) XY is the mcnc'ie.m cylindrical wav Thé
P is a point on the screen and SAP is perpendicular to the scrc:ep.l B
screen is perpendicular to the plane of 'lhe paper. .Bclow me. pOlEa 0
the geometrical shadow and above P is the illuminated portion.

P

Fig. 9.14

int P, the wavefront can
distance AP be b. With reference 10 the point P, :
divided into a number of a half period strips as shown in Fig. 9.14.
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is the wavefront, A is the pole of the wavefront and AM,, MM,, MM,
etc. measure the thickness of the 1st, 2nd, 3rd etc. half period strips.
W.ih the increase in the order of the strip, the area of the strip decreases
(Fig. 9.14).

In Fig. 9.13,

AP = b, PM, = b+—2’3

PM, = b+% ete.
Let P’ be a point on the screen in the illuminated portion (Fig. 9.15).
To calculate the resultant effect at P’ due to the wavefront XY, join S
to P’. This line meets the wavefront at B. B is the pole of the wavefront
with reference to the point 2" and the intensity at P’ will depend mainly
on the number of half period strips enclosed between the points A and

M

1
Y

N

Fig. 9.15

The effect at P’ due to the wavefront above B is the same at all points
the screen whereas it is different at different points due to the wavefront
ween B and A. The point P” will be of maximum intensity, if the num-
of half period strips enclosed between B and A is odd and the intensity

| '’ will be minimum if the number of half period strips enclosed be-
n B and A is even.

13 POSITIONS OF MAXIMUM AND MINIMUM
INTENSITY

~ Let the distance between the slit and the straight edge be a and the

a ‘¢ between the straight edge and the screen be b (Fig. 9.15). Let
be x.

The path difference,
8 =AP '—BP’



432 A Textbook of Optics

able. There is no marked transition between the diffraction bands observed
in the geometrical shadow and the illuminated portion. The intensity dis-
tribution on the screen due to a narrow slit (say less than the wavelength
of light) a broad central maximum will be observed in the illuminated por-
tion and the intensity variation cannot be distinguished. The intensity
gradually falls off in the region of the geometrical shadow.

s
(2_!@ DIFFRACTION DUE TO NARROW WIRE

In Fig. 920, § is a narow slit illuminated by monochromatic light,
AB is the diameter of the narrow wire and MN is the screen. The length
of the wire is parallel to the illuminated slit and perpendicular to the plane
of the paper. The screen is also perpendicular to the plane of the paper.
XY is the incident cylindrical wavefront and P is a point on the screen
such that SOP is perpendicular 1o the screen. EF is the region of the
geometrical shadow and above E and below F, the screen is il-
luminated.

Q=

‘ng

Fig. 9.20

Now consider a point P on the screen in the illuminated portion.
Join § meeting the wavefront at 0°. O is the pole of the wavefront with
reference to P’. The intensity at P” due to the wavefront above O is
the same at all points and the effect due to the wavefront BY is negligible.
The intensity at P will be maximum or minimum depending on whether
the number of half period strips between O’ and A is odd or even. Thus,
in the illuminated portion of the screen, djffraction bands of gradually di-
minishing intensity will be observed. The distinction between maxima and
minima will become less if P’ is far away from the edge E of the geo-
metrical shadow. Maxima and minima cannot be distinguished if the wire
is very narrow, because in that case the portion BY of the wavefront also
produces illumination at P.

[
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Next consider 4 point P” in the region of the geometrical shadow.
Interference bands of equal width will be observed in this region due to

the fact the points A and B of the incident

wavefront, are similar 0 two' coherent

sources. The point P will be of maximum
b a c

or minimum intensity, depending On
whether the path difference (BP” -AP")
is” equal to even or odd multiples of
A/2 The fringe width B is given by

DA
P

where D is the distance between the wire and the screen, A is the wave-
length of light and d is the distance between the two coherent SOUTCES.

Fig 921

In this case, d = 2r where 2r is the diameter of the wire (AB
= 2r).
B = D) CEAboW !

(il

or A= i

Here, B the fringe width cor-
responds to the distance between
any two consecutive maxima,
Thus, from equations (i) and (i),
knowing the values of ror Aihor
r can be determined. In Fig. 9.21,
the bands marked "a" represent the
interference bands in the region of
the geometrical shadow and the b THICK WIRE
bands marked b, b represent the
diffraction bands in the illuminated
portion. The intensity distribu-
tion due to a narrow wire is shown in Fig. 9.22 (a). The centre of the
geometrical shadow is bright.

On the other hand, if the wire is very thick, the interference bands
cannot be noticed.

From equation (i),

Fig 932
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;»pere B.ls the fririge widt_h. As the diameter: of the wire increases the
ringe width decreases and if the wire is sufficiently thick, the width of
lhc. mtcrferenge fringes decreases considerably and they car;nol be disti

guus‘l‘led. The mlgmily falls off rapidly in the geometrical shadow. The di?-
frfu:tlon pattern in the illuminated portion will be similar to thar .of a lhi-
wire [Fig. 9.22 (b)}. Coloured fringes will be observed with white Iigh:1

9.17 CORNU’S SPIRAL

To find the effect at a point due to an inci
find the effect a an incident wavefront Fresnel”
mc!hod consists in dividing the wavefront into half period strips ornt:I;
period zones. the path difference between the secondary waves from two

corresponding points of neighbouring zones is equal to X
X

In Fig. 923, Sisa point source of | i
' X of light and XY is the inci
spherical wavefront. With reference to the point P, O is the pil;ng;'dtet:‘:
wavefront. Let a and b be the distances of the points § and P from th
pole of the wavefront. With P as =
Centre and radius b draw a
sphere touching the incident
wavefront at O. The path differ-
ence between the waves travel-
ling in the directions SAP and
SOP is given by
d = SA+AP-SopP
= SA+AP- (SO +0P)
=a+tAB+b—(a+b)
= AB

Fig. 9.23

For large distances of a and b, AM and B,
: ) N can be taken t -
proxXimately equal and the path difference d can be written as g

, d = AB = MO + ON
But, from the property of a circle,

=AM w
MO—ZSO_ a (i
and N D =i i 4
20P 2p
a 2bc 2 1)

N

Diffraction i

If AM happens to be the radius of the n th half period zone, then
this path difference is equal 1o % according to Fresnel's method of con-

structing the half period zones.

W(a+b) nk )
2( - s :

The resultant amplitude at an external point due to the wavefront can
be obtained by the following method. Let the first half period strip of the
Fresnel's zones be divided into eight substrips and these vectors are rep-
resented from O to M, (Fig. 9.24). The continuous phase change is due
to the continuous increase in the obliquity factor from O w M,. The re-
sultant amplitude at the external point due to the first half period strip is
given by OM, ( = m ). Similarly
if the process is continued, we o
obtain the vibration curve M M,
The portion M M, corresponds to
the second half period strip. The
resultant amplitude at the point
due to the first two half period
strip is given by OM,( = A). If
instead of eight substrips, each
half period zone is divided into
substrips of infinitesimal width, a
smooth curve will be obtained.
The complete vibration curve for
the whole wavefront will be a
spiral as shown in Fig. 9.23. X :
al:xd Y comespond to the two ex- e
tremities of the wavefront and M,, M, etc. refer to the edge of the first,
second, etc. half period strips. Similarly M ’, M’, etc. refer to the edge

of the first, second ete. half period strips of the lower portion of the wave-
front. this is called Cornu's spiral. The characteristic of this curve is that
for any point P on the curve, the phase lag § is directly proportional to
the square of the distance v. The distance is measured along the length
of the curve from the point O. For a path difference of A the phase dif-
ference is 2n. Hence, for a path difference of d, the phase difference &

is given by

mi

2R
8= Y .d

Substilut.ing the value of d from equation (ii)
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in the region of the geometrical shadow. The intensity distribution due to
Fresnel's diffraction at a straight edge is given in Fig. 9.17 on page 429,

922 FRAUNHOFER DIFFRACTION AT A SINGLE SLIT

‘To obtain a Fraunhofer diffraction pattern, the incident wavefront
must be plane and the diffracted light is collected on the screen with the
help of a lens. Thus, the source of light should either be at a large distance
from the slit or a collimating lens must be used.

In Fig. 9.33, S is a narrow slit perpendicular to the plane of the paper
and illuminated by monochromatic light. L is the collimating lens and A8
is a slit of width @, XY is the incident spherical wavefront. The light pass-
ing through the slit AB is incident on the lens L, and the final refracted
beam is observed on the screen MN. The screen is perpendicular to the

<

"~—~1u-‘\
h -

===t/
T

Fig. 9.33

plane of the paper. The line SP is perpendicular to the screen. L and L2
arc achromatic lenses.

A plane wavefront is incident on the slit AB and each point on this
wavefront is a source of secondary disturbance. The secondary waves trav-
elling in the direction parallel to OP viz, AQ and BV come to focus at
P and a bright central image is observed. The secondary waves from points
cquidistant from O and situated in the upper and lower halves OA and
OB of the waterfront travel the same distance in reaching P and hence
the path difference is zero. The secondary waves reinforce one another
and P will be a point of maximum intensity,

Now, consider the secondary waves travelling in the direction AR,
inclined at an angle 0 to the direction OP. All the secondary wave trav-
elling in this direction reach the point P’ on the screen. The point P* will
be of maximum or minimum intensity depending on the path difference
between the secondary waves originating from the comresponding points
of the wavefront. Draw OC and BL perpendicular to AR.
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Then, in the A ABL

i AL AL
sm AB a
or AL = asin®

where a is the width of the slit and AL is .the path difference betwee.n
the secondary waves originating from A and B. If this path diﬁetence. is
equal to A the wavelength of light used, then P’ will be a point of mini-
mum intensity. The whole wavefront can be considered to be of two halves
OA and OB and if the path difference between the secondary waves from
A and B is A, then the path difference between the secondary waves from
A and O will be %, Similarly for every point in the upper half OA, there
is a corresponding point in the lower half OB, and the path difference be-
tween the secondary waves from these points is % Thus, destructive in-
terference takes place and the point P will be of minimum intensity. If
the direction of the secondary waves is such that AL = 24, lhen also th.e
point where they meet the screen will be of minimum imons!ty. This is
$0, because the secondary waves from the corresponding points of the

lower half, differ in path by % and this again gives the position of mini-

mum intensity. In general

asine,l =nk
sinf = LY
n a

where 8_ gives the direction of the n th minimum. Here n is an integer,

; A "
If, however, the path difference is odd multiples of > the directions of

the secondary maxima can be obtained. In this case,

asin9~=(2n+l)%
or sinO_ = L;al)—l‘
where n=1,23etc.

Thus, the diffraction pattern due to a single slit consnsts -of a central
ht maximum at P followed by secondary maxima and minima on both
sides. The intensity distribution on the screen is given in Fig. 9.34.
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P corresponds to the position of the central bright mnximum--a"nd the points
on the screen for which the path difference between the points A and B

INTENSITY
-3g~27 -n P n 2nr 3n
=32 23 A A 2)2 32
a a \a A a .
Fig. 9.34

is A, 2A etc., comrespond to the positions of secondary minima. The sec-
ondary maxima are of much less intensity. The intensity falls off rapidly

from the point P outwards.
If the lens L, is very near the slit or the screen is far away from

the lens L,, ther
sin@ = % i)

wncr-c £ is the focal length of the lens L,

. A

But, sm6=;

x _A

TR
_fA

or T 7

where x is the distance of the secondary minimum from the point P.
Thus, the width of the central maximum = 2x,
or 2% = Z‘Q" ALit)
a
The width of the central maximum is pmportiona! to A, the wave-
length of light. With red light (longer wavelength), the width of the central
maximum is more than with violet light (shorter wavelength). “.Fuh an
row slit, the width of the central maximum is more, The dnffrz_tcufm patters
consists of altermate bright and dark bands with monochromatic hgh(. Wi
white light, the central maximum is white and the rest of the diffrac

- maximum, find the wavelength of light.
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bands are coloured, From equation (i), if the width a of the slit is large,
sin 8 is small and hence 6 is small. The maxima and minima are very
close to the central maximum at 2. But with a narrow slit, @ is small and
hence © is large. This results a distinct diffraction maxima and minima
on both the sides of P.

Example 99, Find the half angular width of the central
bright maximum in the Fraunhofer diffraction pattern of a siit of width
12x107% cm when the slit is illumingted by monochromatic light of
wavelength 6000 A.

Here sing = &
a
where 8 is half angular width of the central maximum,
a=12x10"em, A = 6000A = 6x 10-*cm,
A_ 6x107°
12x%10"*

sin@ = = 0.50

or 8 =30

ixample 9.10. /n Fraunhofer diffraction due to a narrow slit a
screen is placed 2 m away from the lens to obtain the pattern. If the slit
width is 0.2 mm and the first minima lie 5 mm on either side of the central
[Delhi (Sub) 1977}
In the case of Fraunhofer diffraction at a narrow rectangular

lperture,

asin® =nk
n=1
asinf = A
sine=—3
ax
D =X
ax
A= D
Here a=02mm = 002¢cm
x=5mm = 05cm
D=2m=200cm
0.02x%0.5
e 200
A=5x10"5cm
A = 5000 A
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of the aperture and P is a point on the screen. CP is perpendicular 0
the screen. The screen is perpendicular to the plane of the paper. A plane
wavefront is incident on the circular aperture. The secondary waves trav-
elling in the direction CO come to focus at P, Therefore, P corresponds
to the position of the central maximum. Here, all the secondary waves
emanating from points equidistant from O travel the same distance before
reaching P and hence they all reinforce one another, Now consider the
secondary waves travelling in a direction inclined at an angle & with the
direction CP. All these secondary waves meet at P on the screen. Let
the distance PP, be x. The path difference between lhc secondary waves
emanating fnom the points B and A (extremities of a diameter) is AD.

From the A ABD,
AD = dsin

Arguing as in Article 9.22, the point P will be of minimum intensity
if this path difference is equal to integral muluples of A ie.,

dsinf = nh D)

The point P, will be of maximum intensity if the path difference is

equal to odd multiples of-% ie.,

dsin@ = M)—‘ i)

If P, is a point of minimum intensity, then all the points at the same;
distance l‘rom P as P and lying on a circle of radius x will be of minimum

intensity. Thus, the dxffmmon pattern due 1o a circular aperture consists
of a central bright disc called the Airy’s disc, surrounded by alternate da f’;;
and bright concentric rings called the Airy's rings. The intensity of the
dark rings is zero and that of the bright rings decreases gradually outwa ~;j
from P

Further, if the collecting lens is very near the slit or when the
is at a large distance from the lens,

et
sin =8 ==
s f
Also, for the first secondary minimum,
dsin® = A
sin0=0=-3-
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From equations (i) and (iv)

L Y
[
&B &>

or «(V)
where x is the radivs of the Airy's disc. But actually, the radius of the
first dark ring is slightly more than that given by equation (v). According
to Airy, it is given by

1.22
X = "“"l"& Vi)

The discussion of the intensity distribution of the bright and dark
rings is similar to the one given for a rectangular slit. With increase in
the diameter of the aperture, the radius of the central bright ring decreases.

« Example 9.16. In Fraunhofer diffraction pattern due to a single slit,
the screen is at a distance of 100 cm from the slit and the slit is illu-
minated by monochromatic light of wavelength 5893 A. The width of the
slit s 0.1 mm. Calculate the separation between the central maximum and
the first secondary minimum. (Mysore)

For a rectangular slit,

% =%"
Here f=100cm, A = 5893 A

5893 x 10~ cm,
d=01Imm=00lcmx =72

_ 100x5893x10°* _
x= B = 0.5893 cm

6 FRAUNHOFER DIFFRACTION AT DOUBLE SLIT

~

In Fig. 940, AB and CD are two rectangular slits parallel to one
iither and perpendicular to-the plane of the paper. The width of each
Iy @ and the width of the opague portion is b. L is a collecting lens
I MN is a screen perpendicular to the plane of the paper. P is a point
the screen such that OP is perpendicular to the screen. Let a plane
jelront be incident on the surface of XY. All the secondary waves trav-
4 in a direction parallel to OP come to focus at P. Therefore, P cor-

I8 10 the position of the central bright maximum.
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In this case, the diffraction pattern has to be considered in two parts
(1) the interference phenomenon due to the secondary waves emanating
from th comresponding points of the two slits and (ii) the diffraction pattern
due to the secondary waves from the two slits individually. For calculating

X. L M
Y

T A % P
a )
$ e >
b P e c—— c— -— —— — ———

Q ; P
‘*‘ c » ——
i

D[ -

Y N

Fig. 9.40

the positions of interference maxima and minima, the diffracting angle is
denoted as 0 and for the diffraction maxima and minima it is denoted as
¢. Both the angles 6 and ¢ refer to the angle between the direction of
the secondary waves and the initial direction of the incident light,

(i) Interference maxima and minima. Consider the secondary
'waves travelling in a direction inclined at an angle 0 with the initial
direction.

In the A ACN (Fig. 9.41)

sinB = 2 i
AC _a+b
or CN = (a+b)sin®

If this path difference is equal to odd
multiples of % 8 gives the direction of D

minima due to interference of the secondary

wa its.
ves from the two slits Fig. 9.41

CN = (a+b)sin 6" = (2n+ l)% W)

Putting n = 1, 2, 3 etc., the values of 0,0, 8, etc, correspondi .
to the directions of minima can be obtained. '
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From equation (i)

Coa_ @neDA i
sn g, = 2(a+b) ()
On the other hand, if the secondary waves travel in a direction

; A A
8 such that the path difference is even multiples of > then 0 gives the

direction of the maxima due to interference of light waves emanating from :
the two slits.

A
CN = (a+b)sin8’ = 2n.§
Sy nh o
or sinf’ = (@+b) N (17))]

Putting n = 1, 2, 3 etc,, the values 6°,67,8", etc., corresponding
{0 the directions of the maxima can be obtained.

From equation (if)

o s o
SY = 2(@+b)
51 .
2{a+b)
A Aiv)

sinez—smel = a—+3

Thus, the angular separation between any (wo consecutive minima

| maoxima) is equal to ;%. The angular separation is inversely pro-

nal 1o (@ + b), the distance between the two slits,

(i{) Diffraction maxima and minima. Consider the secondary waves
ing in a direction inclined at an angle ¢ with the initial direction
incident light.

I the path difference BM is equal to A the wavelength of light used,
'\Q will give the direction of diffraction minimum (Fig.' 9.41), That
path difference between the secondary waves emanating fn.)m‘lhe
e of a slit (i.e., points A and B) is equal to A. Considering the
0l on AB to be made up of two halves, the path differenf:e between
tesponding points of the upper and the lower halves is equal to

tat P’ due 1o the wavefront incident on AB is zero. Similarly

sin 8,
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for the same direction of the secondary waves, the effect at £’ due 1o
the wavefront incident on th slit CD is also zero. In general,
asing, = nk (V)
Putting n = 1, 2 etc., the valves of 9, . ¢, etc.,, corresponding to the
directions of diffraction minima can be obtained.
9.27 FRAUNHOFER DIFFRACTION AT DOUBLE SLIT
CALCULUS METHOD)

The intensity distribution due to Fraunhofer diffraction at double slit
two parallel slits) can be obtained by integrating the expression for dy
vide single slit) for both the slits.

Fig. 9.42

Diffraction

_r__[_‘dsin0+asin0
2ed 0 T S 2

t_r dsin®). (masing ]
+zsm9 sin 27 T A >
_ masinB
A
y= Ka[%)[ﬁﬂzz[?"{')
t r dsinB
+sm2u(T-l+ A )]
o t r dsin® ndsin O
y=2Ka T)““z"(r'f 2 ]°° n
ndsin 6
A p
sin & in 2% 1 _r dsinf
y = 2Ka w— cos 3 sin P Ty
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The intensity at a point P’ is given by
/= maa(i'g,s]cosza
I, = Ka'
in2
41 (SI?TG Jcos’ p

The intensity of the central maximum = 4l when ot =0 and B = 0.

In Fig. 9.43, the dotted curve represents the intensity distribution due
to diffraction pattern due to double slit and the thick line curve rep-
resents the intensity distribution due to interference between the light from
both the slits. The pattern consists of diffraction maxima within each dif-
fraction maximum,

The intensity distribution due to Fraunhofer diffraction at two parallel
§lits is shown in Fig. 943. The full line represents equally  spaced
u}terfcrence maxima and minima and the dotted curve represents the
diffraction maxima and minima. In the region originally occupied by the

Jiss

LINTENSITY
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Fig. 9.43

f:cntral maximum of the single slit diffraction pattern, equally spaced
Pmerfcrence maxima and minima are observed . The intensity of the central
Interference maximum is four times the intensity of the central maximum
of the single slit diffraction pattern. The intensity of the other interference
mim on the two sides of the central maximum of the single slit
diffraction pattern. The intensity of the other interference maxima on the
two sides of the central maximum gradually decreases. In the region
of the secondary maxima due to diffraction at a single slit, equally
spaced interference maxima of low intensity are observed. The intensity
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distribution shown in Fig. 9.43 cormresponds to 2z = b where a is the width
of each slit and b is the opaque spacing between the two slits. Thus, the
pattern due to difftaction at a double slit consists of a diffraction pattem
due to the individual slits of width a each and the interference maxima
and minima of equal spacing. The spacing of the interference maxima and
minima is dependent on the values of a and b.

9.28 DISTINCTION BETWEEN SINGLE SLIT AND
DOUBLE SLIT DIFFRACTION PATTERNS

The single slit diffraction pattern consists of a central bright maxi-
mum with secondary maxima and minima of gradually decreasing inten-
sity. The double slit diffraction pattern consists. of equally spaced
interference maxima and minima within the central maximum. The inten-
sity of the central maximum in the diffraction pattern due to a double slit
1s four times that of the central maximum due to diffraction at a single
slit..In the ahove arrangement, if one of the slits is covered with an opaque
screen, the pattern observed is similar to the one observed with a single
slit, The spacing of the diffraction maxima and minima depends on a, the
width of the slit and the spacing of the interference maxima and minima
depends on the value of @ and & where b is the opague spacing between
the two slits. The intensities of the interference maxima are not constant
but decrease to zero on either side of the central maximum. These maxima
reappear two or three times before the intensity becomes too low to be
observed.

9.29 MISSING ORDERS IN A DOUBLE SLIT
DIFFRACTION PATTERN

In the diffraction pattern due to a double slit discussed earlier, the
alit width is taken as a and the separation between the slits as b, [f the
wlit width a is kept constant, the diffraction pattern remains the same.
oping a constant, if the spacing b is altered the spacing between the
nterference maxima changes. Depending on the relative values of a and
certain orders of interference maxima will be missing in the resultant

m.

The directions of interference maxima are given by the equation

(a+b)sin® = nh (f)
The direction of diffraction minima are given by the eqguation,
asin® = pA (i)

In equations (i) and (ii) » and p are integers. If the values of a and
 such that both the equations are satisfied simultaneously for the same
of @, then the positions of certain interference maxima correspond
diffraction minima at the same position on the screen.



A% A Textbook of Opiicy
(l) Let a=b
Then 2as5mn0 = nh
and asin® = pi
B
P
or n= 2p
If p=123ec.,
then n=246etc,

Thus, the orders 2, 4, 6 etc. of the interference maxima will be miss-
ing in the diffraction pattern. There will be three interference maxima in
the central diffraction maximum

(i) If 24 = b
then dasn® = nh
and asin® = ph
L g
5=
or n= 3p
If p=1273etc
n=3,69eic.

Thus the orders 3, 6, 9 etc. of the interference maxima will be
missing in the diffraction pattern. On both sides of the central maximum,
the number of interference maxima is 2 and hence there will be five in-
terference maxima in the central diffraction maximum. The position of
the third interference maximum also corresponds to the first diffraction
minimum,

(i) If a+b =a
e, if b=10

The two slits join and all the orders of the interference maxima will
be missing. The diffraction pattern observed on the screen is similar to
that due to a single slit of width equal to 2a.

Example 9.17. Deduce the missing orders for a double slit Fraun-
hofer diffraction pattern, if the slit widths are 0.16 mm and they are 0.8
mm apart. [Berhampur (Hons. )|

The direction of interference maxima are given by the equation,
(a+b)sin® = n) A8

7
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The directions of diffraction minima are given by

asin® = ph A1)
(a+b) _n
a P
Here a = 016 mm = 0,016 cm
b= 08mm = 0.080cm
0016+0080 _ n
0.016 P
L
p
n==6p
For values of p=123etk.
n =612 I8et.

Thus the orders 6, 12, 18 etc. of the interference maxima will be

missing in the diffraction pattern.

Example 9.18. A diffraction phenomenon ts observed us{'ng a dau:
ble slit (illuminated with light of wavelength 5000 A. The shl. width s
0.02 mm and spacing between the two slits is (.10 mm. .The distance of
" the screen from the slits where the observation is made is 100 cn.L'Cal— ,
culate (i) the distance between the central maximum and the first mmum_un ¥
the fringe envelope and (ii) the distance between any two conseculive
uble slit dark fringes. [{AS,)
a=002mm=2x10"m

b=01mm=10"m
(a+b) = 12x10*m
A =5000A=5x10"m
d=100cm =1m
() The angular separation between the central maximum and the first

Here

N
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Thus, the resultant amplitude is proportional to N and rc;n’ﬂtant in-
tensity is proportional to M. /

sin® o
I=Ni, (—ar)

These maxima are intense and are called principal maxima.

933 PLANE DIFFRACTION GRATING

A diffraction grating is an extremely useful device and in one of its
forms it consists of a very large number of narrow slits side by side. The
slits are separated by opaque spaces. When a wavefront is incident on a
grating surface, light is transmitted through the slits and obstructed by the
opaque portions. Such a grating is called a transmission grating. The sec-
ondary waves from the positions of the slits interfere with one another.
similar to the interference of waves in Young's experiment. Joseph Fraun-
hofer used the first gratings which consisted of a large number of parallel
fine wires stretched on a frame. Now, gratings are prepared by ruling equi-
distant parallel lines on a glass surface. The lines are drawn with a fine
diamond point. The space in between any two lines is transparent to light
and the lined portion is opaque to light. Such surfaces act as transmission
gratings. If, on the other hand, the lines are drawn on a silvered surface
(plane or concave) then light is reflected from the positions of the mirror
in between any two lines and such surfaces act as reflection gratings.

If the spacing between the lines is of the order of the wave length
of light, then an appreciable deviation of the light is produced. Gratings
used for the study of the visible region of the spectrum contain 10,000
lines per cm. Gratings, with originally ruled surfaces are only few. For
practical purposes, replicas of the original grating are prepared. On the
original grating surface a thin layer of collodion solution is poured and
the solution is allowed to harden. Then, the film of collodion is removed
from the grating surface and then fixed between two glass plates. This
serves as a plane transmission grating. A large number of replicas are pre-
pared in this way from a single original ruled surface

9.34 THEORY OF THE PLANE TRANSMISSION GRATING

In Fig. 9.44, XY is the grating surface and MN is the screen, both
perpendicular to the plane of the paper. The slits are all parallel to one
amduuﬂpapadwlutomeplmcofﬂ;epapmHmABisaslitand
BCislnopaqucpaﬁoumwidlhofeachslitisaandlheopaquespac-
ing between any two consecutive slits is b. Let a plane wavefront be in-
cident on the grating surface. Then all the secondary waves travelling in
the same direction as that of the incident light will come to focus at the
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point F.‘ on the screen, The screen is placed at the focal plane of the col-
lecting fens. The point P where all the secondary waves reinforce one an-
other coé(esponds to the position of the central bright maximum.

& M
_al A
=g /
¢l jb
0y ! >
—————— - ——— P
St ]
S
2 \
| '
Y
N
Fig. 9.44

Now, consider the secondary waves travelling in a direction inclined
at an angle © with the direction of the incident light (Fig. 9.45). The
collecting lens also is suitably rotated such that the axis of the lens is

M
X
M
1 a 8 1 Py
_ib C —
‘— -
- P
)
N
Y
Fig. 945

focus at the point P, on the screen. The intensity at P, will depend on
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the path difference between the secondary waves originating frony'the cor-
responding points A and C of two neighbouring slits. In Fig. 945, AB =
a and BC = b. The path difference between the secondary wayes starting

from A and C is equal to AC sin 0. (This will be clear fromf Fig. 9.41),
But AC = AB+BC = a+b /
. Path difference = ACsin© |
= (a+b)sinb

The point P will be of maximum intensity if this path difference
is equal to integral multiples of A where A is the wavelength of light. In
this case, all the secondary waves originating from the corresponding
points of the neighouring slits reinforce one another and the angle 0 gives
the direction of maximum intensity. In general

(a+b)sin® = nh i)

where 6 is the direction of the n th principal maximum. Putting n = 1,
2, 3 etc., the angles 6,.6:, 0, etc. corresponding to the directions of the
principal maxima can be obtained.

If the incident light consists of more than one wavelength, the beam
gets dispersed and the angles of diffraction for different wavelengths will
be different. Let A andA+dA be two nearby wavelengths present in the
incident light and @ and (8 + 46) be the angles of diffraction corresponding
to these two wavelengths. Then, for the first order principal maxima

{a+b)sin® = A
and’ {a+b)sin(6+d8) = A+dA\

Thus, is any order, the number of principal maxima corresponds to'
the number of wavelengths present. A number of parallel slit images cor-
responding to the different wavelengths will be observed on the screen,
In equation (i), n = | gives the direction of the first order image, n = 2
gives the direction of the second order image and so on. When white light
is used , the diffraction pattem on the screen consists of a white central
bright maximum and on both the sides of this maximum a spectrum cor-
responding to the different wavelengths of light present in the incident

beam will be observed in each order.
Secondary maxima and minima. The angle of diffracting 8 cor-
responding to the direction of the » th principal maximum is given
the equation
(a+b)sin® = nh
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'ln\.\this equation, (a + b) is called the grating element. Here a i;
thg widthof the slit and b is the width of the opaque portion. For a grating
with IS.O%) lines per inch the value of

2.54
15000 ™

Now, let the apgle of diffraction be increased by a small amount 46
such that the path difference between the secondary waves from the points

(a+b) =

2 g A
A and C (Fig, 9.45) increases by N Here V is the wtal number of lines

on the grating surface, Then, the path difference between the secondary
waves from the extreme points of the grating surface will be

A :

N N = A Assuming the whole wavefront to be divided into two halves,
the pamkdifferencc between the corresponding points of the two halves
will be 2 and all the secondary waves cancel one another's effect. Thus,

(6, +dB) will give the direction of the first secondary minimum after the

Fig. 9.46
th primary maximum. Similarly, if the path difference between the
) 2 o 2N 3N
0 20 SA
; dary waves from the points A and C is NN e for gradually

ing values of @6, these angles correspond to the directions of 2 nd,
elc. secondary minima after the  th primary maximum. If the value

. then the path difference between the secondary waves from the ex-

points of the grating surface is %XN = 2 and considering the

mnt to be divided into 4 portions, the concept of the 2 nd secondary
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/
minimum can be understood. The number of secondary minima in tietw'een
any two primary maxima is N - 1 and the number of secondary maxima
is N -2 T

The intensity distribution of the screen is shown io Fig. 9.46,
P corresponds to the position of the central maxima and_l._z etc. on the
two sides of P represent the 1st, 2nd etc. principal maxima. &, b, ¢ etc,
are secondary maxima and d. e etc. are the secondary minima. The
intensity as well as the angular spacing of the' sef:ondary ] maxima and
minima are so small in comparison to the principal maxima that they
cannot be observed. It results in uniform darkness between any two

principal maxima.
935 WIDTH OF PRINCIPAL MAXIMA
The direction of the n th principal maximum is given by
{a+bysin@ = nh - A0
Let © + d and 8 - dO give the directions of the first secondary
minima on the two sides of the n th primary maxima (Fig. 9.47).

A >
Then. (a+b)sin[8 £dB] = nht N Aid)

where N is the total number of lines on the grating surface.

Fig. 9.47

Dividing (i) by ()

& A
(@+h)sn @) Ey
(a+b)sin@_ nh
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\.\ sin (8 + d9) 1
‘ sin® T Nm
Expanding this equation
sin @ - cos d8t cos 6, sin df 1
sin @, ~ " Nn )

For small values of d6;cosd® = | andsind® = d6.

1 .
1tcoth d8 = liN" Liv)
S
cot O, df = o
- 1
i Nncot8

In equation (iv), d@ refers to half the angular width of the principal
maximum. The half width @8 is (i) inversely proportional to N the total
number of lines and (if) inversely proportional to ncot8 . The value of

ncot® is more for higher orders because the increase in the value of
cot 6" is less than the increase in the order. Thus, the half width of the

principal maximum is less for higher orders. Also, the larger the number
of lines on the grating surface, the smaller is the value of d8. Further,
the value of 8, is higher for longer wavelengths and hence the spectral

lines are more sharp towards the violet than the red end of the spectrum.
9.36 OBLIQUE INCIDENCE

Let a parallel beam of light be incident obliquely on the grating
surface at an angle of incidence i (Fig. 9.48).

Path difference between the secondary
waves passing through the points A and
C =FC + CE

Here, AB = a, the width of the slit and BC
w b, the width of the opaque portion.

From the A AFC
FC = (a+b)siniand from A ACE

CE = (a+b)sin® AB=2a;BC=b
s FC+CE = (a+b)(sin®+sini) ..(i) Fig. 948
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Equation (i) holds good if the beam is diffracted upwm;ds. Fig.
9.49 illustrates the diffraction of the beam downwards. In thi/s case the

path difference
= (a+b) [sin B -sini] 4 (7))

For the n th primary maximum

(a+b)[sin@ +sini] = nA i)
B +i 0 -i A
or {fa+b)| 2-sin 3 -c0sT = n
& en+i n’« 3
or sin S 8 —i (V)
2 (a+b)cos "2

AB=a;BC=b

Fig. 9.49

The deviation of the diffraction beam = 8 +1

6 +i
For the deviation (8 +¢) to be minimum, sin-—'z— must  be
6 —i
minimum. This is possible if the value of cos "2 is maximum Le.,

0 —i 4 e
e or 8 =i

Thus, the deviation produced in the diffracted beam is minimum

when the angle of incidence is equal to the angle of diffraction. Let D_
be the angle of minimum deviation.

Then D_ =8 +i
But B =i
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' 9 Dﬂl . D.
= and [ = 3
- D. - DN
(a+b) sm7+smT = nh
D
or 2 (a+b) sin 7"’ = nA V)

Equation (v) refers to the principal maximum of the n th order for
a wavelength A,

Example 9.20. A parailel beam of light of wavelength 5460 A is
incident at an angle of 30° on a plane transmission grating which has
6000 lineskm. Find the highest order spectrum that can be observed.

[Dethi (Hons.) 1984)
(a+b)(sin@ +sini] = nA

Here 9' =7
(@a+b)(2sini) = nh
1
Here (a+b) -[6x10’)m
A =5460 A = 5460x 10°° m
sin30 = 0.5
n=(a+b)(25in|')_ 1
A T 6 10° x 5460 x 10-10
n =305
or n=3

9.37 ABSENT SPECTRA WITH A DIFFRACTION

GRATING
In the equation (@a+b)sin® =X if (a+b)<A, then sin0> 1.

But this is not possible. Hence the first order spectrum is absent. Similarly,
the second, the third etc. order spectra will be absent if (a+b) <25,

(a +b) < 3% etc. In general, if (@ +b) < nA, then the # th order spectrum
will be absent.

The condition for absent spectra can be obtained from the following

consideration. For the n th order principal maximum

(@a+b)sin®, = ni D)
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Further, if the value of @ and 8 are such that /

asin, = A (i)
then, the effect of the wavefront from any particular slit will be zero. Con-
sidering each slit to be made up of two halves, the path difference between
the secondary waves from the corresponding points will be %’ and they

cancel one another’s effect. If the two conditions given by equations ()
and (ii) are simultaneously satisfied, then dividing (i) by (if)

(a+b)sin@ 5
asin@ i
or B9 S (i)
Q

In equation (iii), the values of n = |, 2, 3 etc. refer to the order of
the principal maxima that are absent in the diffraction pattern.

a+b=l: b 0
a

(z) if

In this case, the first order spectrum will be absent and the resultant
diffraction pattern is similar to that due to single slit,

i if atb _ 3. a=b
a
i.e., the width of the slit is equal to the width of the opaque spacing be-
tween any two consecutive slits. It this case, the second order spectrum.

will be absent.

9.38 OVERLAPPING OF SPECTRAL LINES

If the light incident on the grating surface consists of a large range
of wavelengths, then the spectral lines of shorter wavelength and of higher
order overlap on the spectral lines of longer wavelength and of lower or-
der. Let the angle of diffraction 8 be the same for (i) the speciral ling
of wavelength A in the first order, (i) the spectral line of wavelength

A, in the second order and (iii) the spectral line of wavelength A, in t
third order. Then
(a+b)sin® = 1. =24 =3\ =...
The red line of wavelength 7000 A in the third order, the green lin
of wavelength 5250 A in the fourth order and the violet line of wavelen

4200 A in the fifth order are all formed at the same position of the
because,
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(@ +b)sinB= 3 x7000x 10~*
= 4x5250% 10°*
= 5x4200x 10"
Here (a + b) Is expressed in cm.

For the visible region of the spectrum, there is no overlapping of
the spectral lines. The range of wavelengths for the visible part of the
spectrum is 4000 A to 7200 A, Thus, the diffracting angle for the red end
of the spectrum in the first order is less than the diffracting angle for the
violet end of the spectrum in the second order If, however, the
observations are made with a photographic plate, the spectrum recorded
may extend up to 2000 A in the ultraviolet region. In this case, the spectral
line corresponding to a wavelength of 4000 A in the first order and a
spectral line of wavelength 2000 A in the second order overlap. Suitable
fillers are used to absorb those wavelengths of the incident light which
will overlap with the spectral lines in the region under investigation.

9.39 DETERMINATION OF WAVELENGTH OF A
SPECTRAL LINE USING PLANE TRANSMISSION
GRATING

In the laboratory, the grating spectrum of a given source of light is
obtained by using a spectrometer. Initially all the adjustments of the
spectrometer dre made and it is adjusted for parallel rays by Schuster's
method. The slit of the collimator is illuminated by monochromatic light
(say light from a sodium lamp) and the position of the telescope is

COLLIMATOR

Fig. 9.50

udju_s'ted such that the image of the slit is obtained at the position of the
vertical cross-wire in the field of view of the telescope. Now the axes of
the collimator and the telescope are in the same line. The position of the



























A Textbook of Optics

(a+b)sin® = nkl
(@a+b)x05 = 3x54%x1077
(a+b) = 3.24x10°°m
(@+b) = 3.24%10"*cm
Number of lines per cm,
|
(a+b)

Mo
334X 10"

N

N = 3086 lines / cm

-
(9.40 DISPERSIVE POWER OF A GRATING

_ Dispersive power of a grating is defined as the ratio of the
difference in the angle of diffraction of any two neighbouring spectral lines
to the _diﬂ'ercnce tn wavelength between the two spectral lines. It can also
Pe defined as the difference in the angle of diffraction per unit change
in wavelength. The diffraction of the » th order principal maximum for
a wavelength A, is given by the equation,

(a+b)sin6 = nh (1)

Diﬁereptiating this equation with respect to 8 and A [(a + b) is con-
stant and n is constant in a given order]

(a+b)cosOdb = ndh

B ap. . T Y W
dh  (a+b)cosB

- @ _nN’ i
dh  cosB (i)

3 o O i
In equation (if) s the dispersive power, n is the order of the

.spc;chum N’ is the number of lines per ¢m of the grating surface and 0
is the angle of diffraction for the » th order princi i
oo - principal maximum of

Frf)m equation (i), it is clear, that the dispersive power of the grating
is (I) directly proportional to the order of the spectrum, (2) directly
proportional to the number of lines per cm and (3) inversely propertional
fo cos B. Thus, the angular spacing of any two spectral lines is double
in the second order spectrum in comparison to the first order.

Diffraction 8

Secondly, the angular dispersion of the lines is more with 2 grating
having larger number of lines per cm. Thirdly, the angular dispersion 1s
minimum when 8 = 0. If the value of 8 is not large the value of cos 0
can be taken as unity approximately and the influence of the factor cos
0 in the equation (ii) can be neglected.

Neglecting the influence of cos 8, it is clear that the angular dis-
persion of any two spectral lines (in a particular order) is directly pro-
portional to the difference in wavelength between the two spectral lines.
A spectrum of this type is called a normal spectrum.

If the linear spacing of two spectral lines of wavelengths A and
A+d\ is dx in the focal plane of the telescope objective or the photo-
graphic plate, then

dx = fd8
where f is the focal length of the objective. The linear dispersion
de _ .d8 _ f-nN ’ o
y Yam f,ﬂ R b . {iif)
or dx = M dh
cos 6

The linear dispersion is useful in studying the photographs of

i\ spectrum.
941 PRISM AND GRATING SPECTRA
For dispersing a given beam of light and for studying the resultant
wum, a diffraction grating is mostly used instead of a prism.
The following points give broadly the distinction between the spectra
with a grating and a prism.
() With a grating, a8 number of spectra of different orders can be

on the two sides of the central maximum whereas with a prism
_one spectrum can be obtained.
(i) The spectra obtained with a grating are comparatively pure than
with a prism.
(ilfy Knowing the grating element (a + b) and measuring the

ling single, the wavelength of any spectral line can be measured
y. But in the case of a prism the angles of deviation are not

related to the wavelength of the spectral line. The angles of
\ are dependent on the refractive index of the material of the

h depends on the wavelength of light.
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In equation (), if t=1cm, A =5000A and = 1.5 then
n = 10,000, /

/
If the number of plates used is 40, the resolving power of thg’ grating
= nN = 10,000 x 40
=4x10°

Thus, the resolving power of an echelon grating is very high and
if the incident beam of light is not truly monochromatic, two nearby spec-
tral lines will appear well resolved, The high resolving power of an eche-
lon grating helps in the study of hyperfine structure e.g., the splitting of
spectral lines in Zeeman effect

9.50 RESOLVING POWER OF OPTICAL INSTRUMENTS

The magnifying power of a telescope or a microscope depends on
the focal length of the lenses used. By a proper choice of the lenses, it
is possible to increase the size of the image, ie., the image subtends a
large angle at the eye. But, it must be remembered that increase in the
size of the image, beyond a certain limit does not necessarily mean gain
in detail. This is the case even if the lenses are free from all aberrations,
chromatic and monochromatic. There is always 2 limit to the useful mag-
nification of an optical instrument. This is due to the fact that for a wave
surface, the laws of geometrical optics do not hold good. In the preceding
articles, concerning diffraction of light, it has been shown that the image
of a point source is not a point but it is a diffraction pattern. With a circular
aperture kept in the path of incident light, the diffraction pattern of a point
source of light consists of a central bright disc surrounded by alternately
dark and bright diffraction rings.

If the lens diameter or the size of the aperture is large, the diffraction
pattern of a point source of light is small. If there are two nearby point
sources, the diffraction discs of the two patterns may overlap and the two
images may not be distinguished. An optical instrument like a telescope
or a microscope is said o have resolved the two point sources when the
two diffraction patterns are well separated from one another or when the
diffraction patterns are small so that in both the cases, the two images
are seen as separate ones. The ability of an optical instrument, expressed
in numerical measure, to resolve the images of two nearby points is
termed as its resolving power.

In the case of a prism or a grating spectrograph, the term resolving
power is referred to the ability of the prism or grating to resolve two
nearby spectral lines 5o that the two lines can be viewed or photographed
as separate lines.
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9.51 CRITERION FOR RESOLUTION ACCO

\ RDIN

LORD RAYLEIGH G

To express the resolving power of an optical instrumen i
cal value, Lord Rayleigh proposed an arbit'::ry criterion. :\2:;&!!: ﬁlo
him, two nearby images are said to be resolved if the position of the
central maximum of one coincides with the first secondary minimum
of the other and vice versa. The same criterion can be conveniently

applied to calculate the resolving power of a telescope 1oSCo|
grating, prism, etc. b it

In Fig. 9.63, A and B are the central maxi i i
) : ima of the diffraction
patterns of two spectral lines of wavelengths A and A,. The difference in

Fig. 9.63

the angle of diffraction is large and the two i

; : images can be seen as separat
ones. The anglc of diffraction corresponding to the central nmximsm o‘:‘
the image B is greater than the angle of diffraction corresponding to the

first minimum at the right of A, Hence th . :
well resolved. e two spectral lines will appear

In Fig. 9.64 the central maxima comresponding to the wavelengths

A and A +d ) are very close, The angle of diffraction corresponding to

c

Ao A dA
Fig. 9.64
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the first minimum of A is greater than the angle of diffraction correspond-
ing to the central maximum of B. Thus, The two images overlap and they
cannot be distinguished as separate images. The resultant inlensiq'/ curve
gives a maximum as at C and the intensity of this maximum is higher
than the individual intensitics of A and B. Thus when the spectrograph
is turned from A to B, the intensity increases, becomes maximum at C
and then decreases, In this case, the two spectral lines are not resolved.

In Fig. 9.65, the position of the central maximum of A (wavelength
A) coincides with the position of the first minimum of B. (wavelength
A+ d)). Similarly, the position of the central maximum of B coincides with

Fig. 9.65

the position of the first minimum of A. Further, the resultant intensity curve
shows a dip at C ie, in the middle of the central maxima of A and B
(Here, it is assumed that the two spectral lines are of the same intensity).
The intensity at C is approximately 20% less than that at A or B. If a
spectrograph is turned from the position corresponding to the central image
of A to the one corresponding to the image of B, there is noticeable de-
crease in intensity between the two central maxima. The spectral lines can
be distinguished from one another and according to Rayleigh they are said
to be just resolved. Rayleigh’s condition can also be stated as follows.
Two images are said to be just resolved if the radius of the central
disc of either pattern is equal to the distance between the centers of
the two patterns.

9.52 LIMIT OF RESOLUTION OF A CONVEX LENS

In Fig. 9.66 L is a convex lens, A and B are two object points and
A’and B’ are the corresponding image points. The distance between the
object points is i and the distance between the image points is &’. The
distance of the object points from the lens is « and the distance of the
image points is v. pand ' are the refractive indices of the object and
image media. R is the radius of the aperture kept in front of the lens
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(D 1s the diameter of the aperture). In the side figure, A “and B are the
centres of the central bright discs of the diffraction patterns of A and

pa
P

Let Aand A" be the wavelengths of light in the object and image media
and A the wavelength of light in vacuum. Then,

Fig. 9.66

A A
A=-andA’ =2

According to Rayleigh, if the two images are just resolved, the dis-
tance between the centres of the two discs (h”) is equal to the radius of
either disc, If this condition is satisfied, then
122k . l..221.0 1.22 ).0

D uD - 2uR
0.612,
=ik A1)
61

'R

sino =

o

&

"

Similarly, sina’ i)
From equation (i)
MR sina = 0.612,

But, in Fig. 9.66 (for small angles of o and 6 )

)

sinozrxumoz:ﬂ
u

and sin6=tan0=§

R = usin®
Substituting the values of sin o and R in equation (jif)
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W= ;cm S mm  approximately

1000 100
0612,
LR

_ 061 x5500% 10~
- 1x0.1

= 0.00034 radian
= | minute of an are (approximately)

The value of £ ( = 10~* cm) is approximately equal to the distance
between the cones in the fovea and thus the retinal structure is strikingly
in accordance with the limit of resolution of the eye, Further, two point
objects appear just resolved if the angle subtended by them at the eye is
| minute of an arc. If the diameter of the pupil of the eye is smaller than
2 mm the numerical aperture decreases and hence the value of h increases,
i.e., two points will appear to be just resolved if the distance between the
two is larger. Thus the resolving ability of the eye is decreased.

'9.54 RESOLVING POWER OF A TELESCOPE

Let a be the diameter of the objective of the telescope (Fig. 9.68).
Consider the incident ray of light from two neighbouring points of a distant
object. The image of each point object is a Fraunhofer diffraction pattern.

sinQ =

=
il

Also,

Fig. 9.68

Let P, and P, be the positions of the central maxima of the two images.
According to Rayleigh, these two images are said to be resolved if the
position of the central maximum of the second image coincides with the
first minimum of the first image and vice versa. The path difference
between the secondary waves travelling in the directions AP, and BP,

is zero and hence they reinforce with one another at P,. Similarly, all the
secondary waves from the corresponding points between A and B will have
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zero path difference. Thus, P, corresponds to the position of
maximum of the first image.l s e

The secondary waves travelling in the directions AP and BP_ will
:m at Pim on the screen. Let the angle P AP, be df. The path différence
etween the secondary waves travelling in the directions B i
equal to BC (Fig. 9.68), e

From the A ABC,

BC = ABsindB = AB.dY = a.d8
(for small angles)

If thisf pznh difference @ -d8 = A, the position of P, corresponds 1o
the first minimum of the first image. But P, is also the position of the
central maximum of the second image, Thus, Rayleigh” ity
lution is satisfied if it

a.dé =\

s
or =" (i)

The whole aperture AB can be considered 0 be made u
of two
halves AO and OB. The path difference between the secondary wal:rcs from

the corresponding points in the two halves will be %’- All the secondary

waves destructively interfere with one another and hence P, will be the

first minimum of the first image. The equation 48 = & holds good for
a

ref:tangular apertures. For circular apertures, this equation, according to
Airy, can be written as
1224

dg = - (i)

whgrc_k is the wavelength of light and a is the aperture of the telescope
objccnye. _’l‘he aperture is equal to the diameter of the metal ring in which
thfc objective lens is mounted. Here d6 refers to the limit of resolution
of the telescope. The reciprocal of 48 measures the

Mg, resolving power of

40 = 1.22x i)

From equation (iii), it is clear that a tel i
m & 1), escope with large diameter
the objective has higher resolving power, d8 is equal to ;eg angle sub-

tended by the two distant object points at the objective.
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Thus resolving power of a telescope can be defined as the reciprocal
of the angular separation that two distant object points must have, so that
their images will appear just resolved according to Rayleigh's criterion.

If f is the focal length of the telescope objective, then

r 122X
de = fon a
. i lﬁ%& wAiv)

wheré 7 is the radius of the central bright image. The diameter of the first
dark ting is.equal to the diameter of the central image. The central bright
disc is called the Airy’s disc.

From equation (iv), if the focal length of the objective is small, the
wavelength is small and the aperture is large, then the radius of the central
bright disc is small. The diffraction patterns will appear sharper and the
angular separation between two just resolvable point objects will be
smaller. Correspondingly, the resolving power of the telescope will be
higher.

Let two distant stars subtend an angle of one second of an are at
the objective of the telescope.

| second of an are = 4.85 x 10”° radian. Let the wavelength of light
be 5500 A. Then, the diameter of the objective required for just resolution
can be calculated from the equation

N 1.22M
a
. i 1.222 . 1.22 x 5500 % 107#
T T T de 485x107*%

13.9 cm (approximately

The resolving power of a telescope increases with increase in the
diameter of the objective. With the increase in the diameter of the ob-

jective, the effect of spherical aberration becomes appreciable. So, in the

case of large telescope objectives, the central portion of the objective is
covered with a stop so as to minimize the effect of spherical aberration.
This, however, does not affect the resolving power of the telescope.

Example 9.40. Find the separation of two points on the moon that
can be resolved by a 500 cm telescope. The distance of the moon is
38% 10° km. The eye is most sensitive to light of wavelength 5500 A.

(Nagpur 1974)
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The limit of resolution of a telescope is given by

g 2o
a
Here A= 5500%x10"%cm, a = 500cm
do = 1.22 x 5500 % 10-*
500

d@ = 1342 x 10~* radian
Let the distance between the two points be x

X
d9=R

Here R =38x10"cm
x=R-d9
=38x10°%1342%10°*
= 50.996 x 107 cm
= 50.996 metres

. ,Examll),l: 9.4‘11. Calculate the aperture of the objective of a telescope
which may be used to resolve stars separated by 4.88 % 107 7
light of wavelength 6000 A 2 ey

Here A=6000A =6x10"%cm, O = 4.88 x 10~° radian
D=7
_ 1223
§im D
b p= 1224  122x6x107% _ 15 em

8  488x10°*
Example 9.42. Two pin holes 1.5 mm apart are placed in front of

11 source of light of wavelength 5.5 % 10~% cm and seen through
: lig) ; a telesco
With its objective stopped down to a diameter of 0.4 cm. Fin‘:fg the maxuna,:ne

ance from the telescope at which the pin holes can be resolved.
[Delhi, 1977]
Here, A=355x10"%cm
a=04cm

Also ==
a8 d
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. Resolving power of a prism

= (-‘iu

di
Thus, the resolving power of a prism is (i) directly proportional to
the length of the base and (i7) rate of change of refractive index with re-
spect to wavelength for that particular material. The expression for resolv-
ing power given above is applicable only to spectral lines of equal
intensity. If two spectral lines are of different intensities, then the value
of dA ie., the difference in wavelength between the two lines must be

higher so that the two lines appear as separate ones,

Example 9.46. The refractive indices of a glass prism for the C and
F lines are 1.6545 and 1-6635 respectively. The wavelengths of these two
lines in the solar spectrum are 6563 A and 5270 A respectively, Calculate
the length of the base of a 60° prism which is capable of resolving sodium
lines of wavelengths 5890 A and 5896 A. (Vikram University)

Resolving power - ﬁ = I%
di _ 16635~ 1.6545
Heeo d\ = (6563 ~5270) 10~

A _ [ _16635-1.6545
dr = '| 16563 -5270) 10~

A = 5893x10"*cm, d\ = (5896~ 5890) 10°*

=6x10"*cm
_ 5893 %107 [ (6563 —-5270) 10-*
T 6x107® 1.6635— 1.6545
= 141 cm

Example 9.47. Calculate the minimum thickness of the base of a
prism which will just resolve the D, and D, lines of sodium. Given W for
wavelength 6563 A = 1.6545 and for wavelength 5270 A = 1.6635.

[Bombay)
In a prism,
: A _ du
Resolving power, i t dk .
Here du _ 1.6635 — 1.6545 ut 0.0090
A\ (6563 ~5270) x 107* 1293 x10-*

539.
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A 107" _ 2875
and &= 6x10° T 6

1=

(5893 %1293 x 10
| 6x0009 °"'

t= 14l cm .

9.59 RESOLVING POWER OF A PLANE DIFFRACTION
GRATING LES "
{The resolving power of a grating is defingd as the ratio of the wav
length of any spectral line to the difference in wavelength belwgen this
line and a neighbouring line such that the two lines appear 1o be just re-
solved. Thus, the resolving power of a grating appear to be just resolved.
Thus, the resolving power of a grating
A
T d
i i i N is the field of view
In Fig. 9.74, XY is the grating surface ar?d M .
the telescope, P, is the n th primary maximum of a.speclral lufxe of
velength A at an angle of diffraction 6,. P, is the n th primary maximurn

o A o s S

__lcenTtRAL
------------ Pl IMAGE

BN

<—--——-“- X

Fig. 9.74
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of a second spectral line of wavelength A+d\ at a diffracting angle
8 +d6.P and P, are the spectral lines in the n th order. These two

spectral lines according to Rayleigh, will appear resolved if the position
of P, also corresponds to the first minimum of P,

The direction of the n th primary maximum for a wavelength A is
given by

(a+b)sin@ = nk D)
The direction of the n th primary maximum for a wavelength
(A +dA) is given by

(a+b)sin(8 +dB) = n(A+dh) W id)
The two lines will appear just resolved if the angle of diffraction
(8, +d8) also corresponds to the direction of the first secondary minimum
after the n th primary maximum at P, (corresponding to wavelength A).
This is possible if the extra path difference introduced is % Where N is

the total number of lines on the grating surface.

(a+b)sin (8 +db) = nh+ % i)

Equating the right hand sides of equations (if) and (iii)
. .
n(l+d2.)—nk+~. ndh =
A X
> Y nN (V)

The quantity % = nN measures the resolving power of a grating.

Thus, the resolving power of a grating is independent of the grating con-
stant. The resolving power is directly proportional to (i) the order of the
spectrum and (if) the total number of lines on the grating surface. For a
given grating, the spacing between the spectral lines is double in the sec-
ond order than that in the first order.

The dispersive power of a grating is given by

df n nN’

dr = (a+b)cos® ~ cos 0
and the resolving power of a grating is given by

-&'-n
‘a_

N
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Where n is the order of the spectrum, N is the total m!mbet_ of hn}eis of
the grating. N is the number of lines per cm on.lhe grating smo:eng :)re;
0 gives the direction of the n th pnncmal.m.anuwm cormlhc Fses
wavelength A. From the above equation, it 15 cl_ear, that dp: 2y
wer increases with increase in the number of lines per cm an leth
gglv;g power increases, with increase in the total number of hneds“= on m:
grating surface (i.e., the width of the grating su:e'ace). lf‘N u: o zas >
in| ,ﬂ!edispasivcpowerv{dlbet same in the
:;(:t ::: (geau wigl:n larger width of the grating surface pro(?uccs Iuiha :e;_s:-
Jution of the spectral lines. With a grating having large width of the gratng
surface, the spectral lines are sharp and narrow. AN
High dispersive power refers to wide separation .
lines whereas hi:vmolvlng power refers to the ability of the instru
mthWmMWhasz. 8 et
Example 9.48. What should be the minimum num{;er of lines
grating :;:’i;:h w;'ll just resolve in the second order the lines whose wave-

Agra)
lengths are 5890 A and 5896 A ? (Ag
A
Resolving power =-‘K=nN
Here, n =2 A =S890A, di = 58965890 = 6A
5890
6 =W
5890

) = 491 approximately.
or N=sxa €1 2o

i lines in a grafing
Example 9.49. Calculate the minimum number of
which will just resolve the sodium lines in the first order spectrum. The

th
wavelengths are 5890 A and 5896 A. (Delhi)
Reso A N
lving power A
Here, n=1, h=580A, =5890x10""cm
. = 5896-5890 = 6A = 6x107*cm
1| A
N= n[:ﬂ.]
_1[ 5890
T s
or n = 982 approximately.



